精英家教网 > 高中数学 > 题目详情
3.设i是虚数单位,$\frac{2+ai}{{1+\sqrt{2}i}}=-\sqrt{2}i$,则实数a=(  )
A.$-\sqrt{2}$B.$\sqrt{2}$C.-1D.1

分析 直接由复数代数形式的乘除运算化简$\frac{2+ai}{1+\sqrt{2}i}$,再由复数相等的充要条件计算得答案.

解答 解:由$\frac{2+ai}{1+\sqrt{2}i}=\frac{(2+ai)(1-\sqrt{2}i)}{(1+\sqrt{2}i)(1-\sqrt{2}i)}$=$\frac{(2+\sqrt{2}a)+(a-2\sqrt{2})i}{3}$=$\frac{2+\sqrt{2}a}{3}+\frac{a-2\sqrt{2}}{3}i$=$-\sqrt{2}i$,
得$\left\{\begin{array}{l}{\frac{2+\sqrt{2}a}{3}=0}\\{\frac{a-2\sqrt{2}}{3}=-\sqrt{2}}\end{array}\right.$,解得a=-$\sqrt{2}$.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知某渔船在渔港O的南偏东60°方向,距离渔港约160海里的B处出现险情,此时在渔港的正上方恰好有一架海事巡逻飞机A接到渔船的求救信号,海事巡逻飞机迅速将情况通知了在C处的渔政船并要求其迅速赶往出事地点施救.若海事巡逻飞机测得渔船B的俯角为68.20°,测得渔政船C的俯角为63.43°,且渔政船位于渔船的北偏东60°方向上.
(Ⅰ)计算渔政船C与渔港O的距离;
(Ⅱ)若渔政船以每小时25海里的速度直线行驶,能否在3小时内赶到出事地点?
(参考数据:sin68.20°≈0.93,tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00,$\sqrt{11}$≈3.62,$\sqrt{13}$≈3.61)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f:A→B是A到B的一个映射,其中A=B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y),则B中元素(1,3)在A中的对应元素是(2,1) 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=(ax+1)lnx-\frac{1}{2}a{x^2}-bx+\frac{b}{e^x}(a,b∈R)$.
(1)若$a=b=\frac{1}{2}$,求函数$F(x)=f(x)-axlnx-\frac{b}{e^x}$的单调区间;
(2)若a=1,b=-1,求证:$f(x)+\frac{1}{2}a{x^2}+bx>lnx-1-2{e^{-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数f(x)=sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,则函数g(x) 的一个单调递增区间是(  )
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[$\frac{π}{4}$,$\frac{3π}{4}$]C.[-$\frac{π}{3}$,$\frac{π}{6}$]D.[$\frac{π}{6}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)在定义域内满足:
(1)对于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);
(2)存在正数M,使得|f(x)|≤M,则称函数f(x)为“单通道函数”,给出以下4个函数:
①f(x)=sin(x+$\frac{x}{4}$)+cos(x+$\frac{π}{4}$),x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{x},-1≤x<0}\\{lo{g}_{\frac{1}{2}}(x+1)-1,0<x≤1}\end{array}\right.$,其中,“单通道函数”有①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.集合A={x|x2-2x>0},B={y|y=2x,x∈R},R是实数集,则(∁RB)∪A等于(  )
A.RB.(-∞,0]∪(2,+∞)C.(0,1]D.(-∞,1]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列${a_1}=\frac{1}{3}$、${a_1}=\frac{1}{3}$满足:${a_1}=\frac{1}{3}$,an+bn=1,${b_{n+1}}=\frac{1}{{2-{b_n}}}$.
(1)求证:数列{$\frac{1}{{b}_{n}-1}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)满足f(x-$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,则f(x+1)的表达式为(  )
A.f(x+1)=(x+1)2+$\frac{1}{(x+1)^{2}}$B.f(x+1)=(x-$\frac{1}{x}$)2+$\frac{1}{(x-\frac{1}{x})^{2}}$
C.f(x+1)=(x+1)2+2D.f(x+1)=(x+1)2+1

查看答案和解析>>

同步练习册答案