精英家教网 > 高中数学 > 题目详情
9.证明以点A(3,4),B(-2,-1),C(4,1)为顶点的三角形是直角三角形.

分析 根据题意,由两点间距离公式计算出|AB|、|AC|、|BC|的值,分析可得:|AB|2=|BC|2+|AC|2,由勾股定理可得分析可得:|AB|2=|BC|2+|AC|2

解答 证明:根据题意,|AB|=$\sqrt{(3+2)^{2}+(4+1)^{2}}$=5$\sqrt{2}$,
|AC|=$\sqrt{(3-4)^{2}+(4-1)^{2}}$=$\sqrt{10}$,
|BC|=$\sqrt{(4+2)^{2}+(1+1)^{2}}$=2$\sqrt{10}$,
因为(5$\sqrt{2}$)2=(2$\sqrt{10}$)2+($\sqrt{10}$)2,即|AB|2=|BC|2+|AC|2
所以∠BCA=90°,
即△ABC是直角三角形.

点评 本题考查两点间距离的计算,涉及勾股定理的运用,注意计算准确即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$x3-ax2-3a2x+b(a,b∈R).
(Ⅰ)若曲线f(x)在点(1,f(1))处的切线方程为y=1,求a,b的值;
(Ⅱ)求f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知三角形ABC中,A为锐角,且$\sqrt{3}$b=2asinB
(1)求A,
(2)若a=7,三角形ABC的面积为10$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.公比为2的等比数列{an}的各项都是正数,且a4a12=36,则a6=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a=3a+1,b=ln2,c=log2sin$\frac{π}{12}$,则(  )
A.b>a>cB.a>b>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在数列{an}中,a1=1,an+1=(-1)n(an +1),记Sn为{an}的前n项和,则S2015=(  )
A.-1008B.-1007C.-1006D.-1005

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求a的值,使关于x的不等式ax2+2x+6a≤0(a≠0)的解集为{x|x<2或x>3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一各棱长均为2的三棱柱,其所有顶点都在一个球面上,则该球的表面积是(  )
A.$\frac{49}{9}$πB.$\frac{7}{3}$πC.$\frac{28}{3}$πD.$\frac{28}{9}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在平面直角坐标系xOy中,圆心在坐标原点、半径为1的圆上有P,Q两个动点,它们同时从圆上一点A(1,0)出发,分别以每秒$\frac{π}{4}$和$\frac{π}{6}$的旋转角速度按逆时针方向旋转.设弦PQ的中点为M,记P,Q的运动时间为x秒.
(1)当x=6时,求∠QOM的大小;
(2)当0<x≤8时,试用x表示线段OM的长度,并求OM长度的最小值.

查看答案和解析>>

同步练习册答案