分析 设椭圆与双曲线:$\frac{{x}^{2}}{{A}^{2}}-\frac{{Y}^{2}}{{B}^{2}}=1$(A>0,B>0)的半焦距为c,PF1=m,PF2=n,利用椭圆、双曲线的定义,结合e1•e2=1可得aA=c2,即DF2垂直于x轴,D(c,$\frac{{b}^{2}}{a}$).
解答 解:设双曲线:$\frac{{x}^{2}}{{A}^{2}}-\frac{{Y}^{2}}{{B}^{2}}=1$(A>0,B>0),
椭圆与双曲线的半焦距为c,PF1=m,PF2=n.∴m+n=2a,m-n=2A.
∵e1e2=1,∵$\frac{c}{a}•\frac{c}{A}=1$.
⇒m2=n2+4c2⇒DF2垂直于x轴⇒D(c,$\frac{{b}^{2}}{a}$)⇒DF2=$\frac{{b}^{2}}{a}$,DF1=2a-$\frac{{b}^{2}}{a}$,则F1D:F2D=$\frac{2{a}^{2}}{{b}^{2}}-1$.
故答案为:$\frac{2{a}^{2}}{{b}^{2}}-1$
点评 本题考查了椭圆、双曲线的离心率,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | c>a>b | B. | a>c>b | C. | b>a>c | D. | a>b>c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1] | B. | [3,+∞) | C. | (-∞,-3] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com