【题目】设各项均为整数的无穷数列满足:,且对所有,均成立.
(1)写出的所有可能值(不需要写计算过程);
(2)若是公差为1的等差数列,求的通项公式;
(3)证明:存在满足条件的数列,使得在该数列中,有无穷多项为2019.
【答案】(1),,,1,3,5,7;(2),;(3)证明见解析.
【解析】
(1)通过列举法表示出所有可能值
(2)分析可知表示的是原数列中的奇数项,求得奇数项的通项公式,再利用相邻两项差的绝对值的关系构造关系式解出偶数项,进而求得通项
(3)可利用(2)中的数列,构造一个循环数列,则可证明循环数列中存在无穷多项为2019
(1),,,1,3,5,7;
(2)是公差为1的等差数列,
数列的所有奇数项为公差为1的等差数列,
当时,
当时,由可知:,即
解得:,;
(3)由(2)可知存在一个数列使得奇数项为从1开始的连续自然数,则易知,
然后自4037项开始,构造奇数项为公差为的等差数列,由(2)可知,
当,时,
当时,由可知
即,解得:
则当奇数项取至1时,重复第一段的数列,得到一个周期数列,在此周期数列中,存在无穷多项为2019,即可得证.
科目:高中数学 来源: 题型:
【题目】已知函数(为常数,且),且数列是首项为,公差为的等差数列.
(1)求证:数列是等比数列;
(2)若,当时,求数列的前项和的最小值;
(3)若,问是否存在实数,使得是递增数列?若存在,求出的范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列的前n项和为,记, ,…, 中奇数的个数为.
(Ⅰ)若= n,请写出数列的前5项;
(Ⅱ)求证:"为奇数, (i = 2,3,4,...)为偶数”是“数列是单调递增数列”的充分不必要条件;
(Ⅲ)若,i=1, 2, 3,…,求数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是以d为公差的等差数列,{bn}数列是以q为公比的等比数列.
(1)若数列{bn}的前n项和为Sn,且a1=b1=d=2,S3<a1003+5b2﹣2010,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s﹣r)是(t﹣r)的约数),求证:数列{bn}中每一项都是数列{an}中的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以椭圆()的右焦点为圆心,为半径作圆(其中为已知椭圆的半焦距),过椭圆上一点作此圆的切线,切点为.
(1)若,为椭圆的右顶点,求切线长;
(2)设圆与轴的右交点为,过点作斜率为()的直线与椭圆相交于、两点,若恒成立,且.求:
(ⅰ)的取值范围;
(ⅱ)直线被圆所截得弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,对坐标平面上任意一点,定义,若两点,,满足,称点,在曲线同侧;,称点,在曲线两侧.
(1)直线过原点,线段上所有点都在直线同侧,其中,,求直线的倾斜角的取值范围;
(2)已知曲线,为坐标原点,求点集的面积;
(3)记到点与到轴距离和为的点的轨迹为曲线,曲线,若曲线上总存在两点,在曲线两侧,求曲线的方程与实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某温室大棚规定,一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工作作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y(单位:度)与时间t(单位:小时,)近似地满足函数关系,其中,b为大棚内一天中保温时段的通风量。
(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);
(2)若要保持一天中保温时段的最低温度不小于17℃,求大棚一天中保温时段通风量的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,若函数满足:①在区间上单调递减,②存在常数,使其值域为,则称函数是函数的“渐近函数”.
(1)判断函数是不是函数的“渐近函数”,说明理由;
(2)求证:函数不是函数的“渐近函数”;
(3)若函数,,求证:当且仅当时,是的“渐近函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装厂生产一种服装,每件服装成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,规定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低元,根据市场调查,销售商一次订购不会超过600件.
(1)设一次订购件,服装的实际出厂单价为元,写出函数的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com