数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总试卷大全
已知双曲线的焦点在轴上,离心率为2,为左、右焦点,P为双曲线上一点,且,,则双曲线的标准方程为__________.
解析试题分析:设双曲线的方程为,由双曲线的离心率,可得,因为是双曲线上的一点,不妨设在双曲线的右支上,则,,由余弦定理得,,可化为,因为,所以;,则,,此时双曲线的标准方程为.考点:本题主要考查双曲线、直线与圆锥曲线的位置关系等知识,考查化归与转化、数形结合的数学思想方法,以及推理论证能力和运算求解能力.
科目:高中数学 来源: 题型:填空题
双曲线的一条渐近线方程为,则________.
已知圆C:(x+1)2+y2=16及点A(1,0),Q为圆C上一点,AQ的垂直平分线交CQ于M则点M的轨迹方程为 .
已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为 .
已知双曲线的两条渐近线与抛物线的准线分别交于两点,为坐标原点.若双曲线的离心率为2,的面积为,则 .
顶点在原点,且过点的抛物线的标准方程是__________________.
已知椭圆的焦点重合,则该椭圆的离心率是 .
长为2的线段的两个端点在抛物线上滑动,则线段中点到轴距离的最小值是
在抛物线:上有一点,若它到点的距离与它到抛物线的焦点的距离之和最小,则点的坐标是________.
百度致信 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区