分析 (1)利用换元法以及函数奇偶性的定义即可求f(x)的解析式并判断f(x)的奇偶性;
(2)利用对数函数的性质,进行比较即可.
解答 解:(1)设x2-1=t(t≥-1),则x2=t+1,
则f(t)=logm$\frac{1-t}{1+t}$,
即f(x)=logm$\frac{1-x}{1+x}$,x∈(-1,1),
设x∈(-1,1),则-x∈(-1,1),
则f(-x)=logm$\frac{1+x}{1-x}$=-logm$\frac{1-x}{1+x}$=-f(x),
∴f(x)为奇函数;
(2)$f(ln\sqrt{e})$=f($\frac{1}{2}$)=logm$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=logm$\frac{1}{3}$,
$f(\frac{1}{3})$=logm$\frac{1-\frac{1}{3}}{1+\frac{1}{3}}$=logm$\frac{1}{2}$,
∵m>1,
∴y=logmx为增函数,
∴logm$\frac{1}{2}$>logm$\frac{1}{3}$,
即$f(ln\sqrt{e})$<$f(\frac{1}{3})$.
点评 本题主要考查函数解析式的求解以及函数奇偶性的判断,根据对数函数的性质是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | 若α∥β,c⊥α,则c⊥β | B. | “若b⊥β,则α⊥β”的逆命题 | ||
C. | 若a是c在α的射影,a⊥b,则b⊥c | D. | “若b∥c,则c∥α”的逆否命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x∈R,2x+x2>1 | B. | ?x∈R,2x+x2≥1 | C. | ?x∈R,2x+x2>1 | D. | ?x∈R,2x+x2≥1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com