精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)在区间(-∞,+∞)内是增函数,a、b∈R,证明:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b).

分析 利用函数的单调性即可得出.

解答 证明:∵a+b≥0,
∴a≥-b,b≥-a,
又函数f(x)在区间(-∞,+∞)内是增函数,
∴f(a)≥f(-b),f(b)≥f(-a).
∴f(a)+f(b)≥f(-a)+f(-b).

点评 本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设y=arctan$\frac{x+1}{x-1}$,则$\frac{dy}{dx}$=-$\frac{1}{1+{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)满足:①对任意实数m,n都有f(m+n)+f(m-n)=2f(m)•f(n);②对任意m∈R,都有f(1+m)=f(1-m)恒成立;③f(x)不恒为0,且当0<x≤1时,f(x)<1.
(1)求f(0)的值;
(2)定义:“若存在非零常数T,使得对函数g(x)定义域中的任意一个x,均有g(x+T)=g(x),则称g(x)为以T为周期的周期函数”,试证明:函数f(x)为周期函数,并求出f($\frac{1}{3}$)+f($\frac{2}{3}$)+f($\frac{3}{4}$)+…+f($\frac{2018}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知log53=a,log54=b,则log5270可表示为(  )
A.$\frac{3}{2}$abB.3a+$\frac{b}{2}$+1C.3a+$\frac{b}{2}$D.a3+$\sqrt{b}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=$\sqrt{5}$sin(2x+φ)对任意x都有f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x).
(1)求f($\frac{π}{3}$)的值;
(2)求φ的最小正值;
(3)当φ取最小正值时,若x∈[-$\frac{π}{6}$,$\frac{π}{6}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={1,2,3,4},则满足条件{1}?B⊆A的集合B的个数有7个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.指数函数f(x)=ax,a>0,a≠1满足性质:对任意的x∈R,f(-x)•f(x)=1,函数g(x)的定义域为R,且g(x)也满足这个性质,若g(x)既不是指数函数也不是常值函数,那么g(x)可以是g(x)=-ax(a>0,且a≠1)(x∈R).(任写一个符合条件的函数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设0≤θ≤2π,如果sinθ>0且cos2θ>0,则θ的取值范围是(  )
A.0<θ<$\frac{3π}{4}$B.0<θ<$\frac{π}{4}$或$\frac{3π}{4}$<θ<πC.$\frac{3π}{4}$<θ<πD.$\frac{3π}{4}$<θ<$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设实数x,y,z满足x+5y+z=9,求x2+y2+z2的最小值.

查看答案和解析>>

同步练习册答案