精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数的图象关于点(-,0)对称,且满足,则的值是

A.2B.1C.-1D.-2

B

解析考点:抽象函数及其应用;函数的值.
分析:由函数图象关于点(- ,0)对称,知f(x)="-f(-x-" ),由f(x)="-f(x-" )可得f(x)=f(x-3),从而f(x)=f(x+3),f(x)是最小正周期为3的周期函数;再由f(-x- )="f(x+" ),可得故f(x)是偶函数,从而结合条件可求得f(1),f(2),f(3)的值.
解:∵函数图象关于点(-,0)对称,
∴f(x)=-f(-x-),①
∵f(x)=-f(x-),即f(x-)=-f(x),
∴f[(x-)-]=-f(x-)=f(x),即f(x-3)=f(x)=f[(x-3)+3],
∴f(x+3)=f(x);
∴f(x)是最小正周期为3的周期函数;
又f(-x-)=f(x+),故f(x)是偶函数.
∴f(-1)=f(2)=1,f(1)=f(-1)=1,f(3)=f(0)=-2,
∴f(1)+f(2)+f(3)=0,又f(x)是最小正周期为3的周期函数,
∴f(1)+f(2)+f(3)+…+f(2011)
=f(2011)=f(3×670+1)=f(1)=1.
故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案