【题目】如图,在四棱锥中,四边形为正方形, 平面, , 是上一点,且.
(1)求证: 平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】试题分析:
(1)连接,由线面垂直的性质定理可得,且,故平面, ,又,利用线面垂直的判断定理可得平面.
(2)法1:由(1)知平面,即是直线与平面所成角,设,则, , ,结合几何关系计算可得,即直线与平面所成角的正弦值为.
法2:取为原点,直线, , 分别为, , 轴,建立坐标系,不妨设,结合(1)的结论可得平面得法向量,而,据此计算可得直线与平面所成角的正弦值为.
试题解析:
(1)连接,由平面, 平面得,
又, ,
∴平面,得,
又, ,
∴平面.
(2)法1:由(1)知平面,即是直线与平面所成角,易证,而,
不妨设,则, , ,
在中,由射影定理得,
可得,所以,
故直线与平面所成角的正弦值为.
法2:取为原点,直线, , 分别为, , 轴,建立坐标系,不妨设,则, , ,
由(1)知平面得法向量,而,
∴ .
故直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为 (其中为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(其中).
(1)若点的直角坐标为,且点在曲线内,求实数的取值范围;
(2)若,当变化时,求直线被曲线截得的弦长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a、b、c分别是角A、B、C的对边,S是该三角形的面积,且
(1)求角A的大小;
(2)若角A为锐角, ,求边BC上的中线AD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司发放员工的薪水有三种方式:①第一个月工资3000元,以后每月以1%的增长率增长;②第一个月工资2400元,以后每月以2%的增长率增长;③第一个月工资为3200元,每月涨工资30元.
(1)设第x个月的工资分别为元,试分别建立关于x的函数;
(2)借助计算器计算这三种情况下各个月的工资;
(3)请分析这三种领薪方法的区别,作为员工选择何种方法更合算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分15分)如图,在半径为的半圆形(O为圆心)铁皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上,将所截得的矩形铁皮ABCD卷成一个以AD为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),记圆柱形罐子的体积为.
(1)按下列要求建立函数关系式:
①设,将表示为的函数;
②设(),将表示为的函数;
(2)请您选用(1)问中的一个函数关系,求圆柱形罐子的最大体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100名学生的数学成绩,发现都在内现将这100名学生的成绩按照,,,,,,分组后,得到的频率分布直方图如图所示,则下列说法正确的是
A. 频率分布直方图中a的值为
B. 样本数据低于130分的频率为
C. 总体的中位数保留1位小数估计为分
D. 总体分布在的频数一定与总体分布在的频数相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线=1,P为双曲线右支上除x轴上之外的一点.
(1)若∠F1PF2=θ,求△F1PF2的面积.
(2)若该双曲线与椭圆+y2=1有共同的焦点且过点A(2,1),求△F1PF2内切圆的圆心轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com