精英家教网 > 高中数学 > 题目详情
2.已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是(  )
A.$6\sqrt{5}$B.$3+\sqrt{5}$C.$14+6\sqrt{5}$D.14

分析 把已知的方程配方后,得到此方程表示以B为圆心,3为半径的圆,在平面直角坐标系中画出此圆,所求式子即为圆上的点到原点的距离的平方,即要求出圆上的点到原点的最大距离,故连接OB并延长,与圆B交于A点,此时A到原点的距离最大,|AB|为圆B的半径,利用两点间的距离公式求出|OB|的长,根据|AB|+|OB|=|AO|求出|AO|的平方,即为所求式子的最大值.

解答 解:方程x2+y2+4x-2y-4=0变形得:
(x+2)2+(y-1)2=9,
表示圆心B(-2,1),半径为3的圆,
画出相应的图形,如图所示:

连接OB并延长,与圆B交于A点,此时x2+y2的最大值为|AO|2
又|AO|=|AB|+|BO|=3+$\sqrt{(-2)^{2}+{1}^{2}}$=3+$\sqrt{5}$,
则|AO|2=(3+$\sqrt{5}$)2=14+6$\sqrt{5}$,即x2+y2的最大值为14+6$\sqrt{5}$.
故选:C.

点评 此题考查了圆的标准方程,以及两点间的距离公式,利用了转化及数形结合的数学思想,其中找出适当的A点,根据题意得出所求式子的最大值为|AO|2是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知抛物线C 的顶点在原点,F($\frac{1}{2}$,0)为抛物线的焦点.
(1)求抛物线C 的方程;
(2)过点F 的直线l与动抛物线C 交于 A、B 两点,与圆M:${(x-\frac{3}{2})^2}+{(y-8)^2}=49$交于D、E两点,且D、E位于线段 AB上,若|AD|=|BE|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={0,2,3},B={2,a2+1},且B⊆A,则实数a=$±\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=1+si{n}^{2}α}\end{array}\right.$(α为参数),以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为θ=$\frac{π}{4}$,试求直线l与曲线C的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$f(x)=sin({x+\frac{π}{2}}),g(x)=cos({x-\frac{π}{2}})$,则下列结论中正确的是(  )
A.函数f(x)的图象向左平移π个单位长度可得到y=g(x)的函象
B.函数y=f(x)+g(x)的值域为[-2,2]
C.函数y=f(x)•g(x)在$[{0,\frac{π}{2}}]$上单调递增
D.函数y=f(x)-g(x)的图象关于点$({\frac{π}{4},0})$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,点P是正方体ABCD-A1B1C1D1的面对角线BC1(线段BC1)上运动,给出下列五个命题:
①三棱锥A-D1PC的体积不变;
②直线AP与平面ACD1所成角的大小不变;
③二面角P-AD1-C的大小不变;
④直线AD与直线B1P为异面直线;
⑤点M是平面A1B1C1D1上到点D和C1距离相等的点,则点M一定在直线A1D1上.
其中真命题的编号为①③④⑤.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若曲线x2+(y+3)2=4(其中y≥-3)与直线y=k(x-2)有两个不同的交点,则实数k的取值范围为$\frac{5}{12}$<k≤$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}是公比为q(q≠1)的等比数列,且a1,a3,a2成等差数列,则公比q的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)在(0,$\frac{4π}{3}$]上单调递增,在($\frac{4π}{3}$,2π]上单调递减,当x∈[π,2π]时,不等式m-3≤f(x)≤m+3恒成立,则实数m的取值范围为(  )
A.[$\frac{1}{2}$,1]B.(-∞,-2)C.[-$\frac{5}{2}$,4]D.[-2,$\frac{7}{2}$]

查看答案和解析>>

同步练习册答案