精英家教网 > 高中数学 > 题目详情
(2011•宝坻区一模)已知向量
a
=(1,2),
b
=(cosa,sina)
a
b
,则tan(a+
π
4
)(  )
分析:先根据向量平行的充要条件求出tana的值,然后根据两角和的正切公式解之即可.
解答:解:∵向量
a
=(1,2),
b
=(cosa,sina)
a
b

∴1×sina-2×cosa=0即tana=2
∴tan(a+
π
4
)=
2+1
1-2×1
=-3
故选D.
点评:本题考查的知识点是共线向量以及三角函数求值,其中两个向量平行的充要条件是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•宝坻区一模)一口袋中装有编号为1.2.3.4.5.6.7的七个大小相同的小球,现从口袋中一次随机抽取两球,每个球被抽到的概率是相等的,用符号(a,b)表示事件“抽到的两球的编号分别为a,b,且a<b”.
(Ⅰ)总共有多少个基本事件?用列举法全部列举出来;
(Ⅱ)求所抽取的两个球的编号之和大于6且小于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)如图,△BCD所在的平面垂直于正△ABC所在的平面,∠BCD=90°,PA⊥平面ABC,DC=BC=2PA,E,F分别为DB,CB的中点,
(1)证明PE∥平面ABC;
(2)证明AE⊥BC;
(3)求直线PF与平面BCD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)数列{an}为正项等比数列,若a2=1,且an+an+1=6an-1(n∈N,n≥2),则此数列的前4项和S4=
15
2
15
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)设函数f(x)=sinx+cos(x+
π
6
),x∈R.
(1)求函数f(x)的最小正周期及在区间[0,
π
2
]上的值域;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,且a=
3
2
b,求角B的值.

查看答案和解析>>

同步练习册答案