精英家教网 > 高中数学 > 题目详情
已知为两条不同的直线,为两个不同的平面,则下列推理中正确的是(  )
A.B.
C.D.
C

试题分析:解:若α∥β,m?α,m?β,则m,n可能平行也可能异面,故A错误;
对于B,由于平行于同一个平面的两条直线可能平行也可能相交,或者异面直线,因此错误
对于C,由于,则利用线面平行的性质定理可知成立。
对于D,由于一条直线平行于平面,则其与平面内的直线可能异面直线,所以错误,故选C.
点评: 本题考查的知识点是空间中直线与平面之间的位置关系,熟练掌握空间线面之间关系的判定方法和性质定理,是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图所示,正方体的棱长为1,O是平面的中心,则O到平面的距离是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。

(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在边长为2的正方体中,EBC的中点,F的中点

(1)求证:CF∥平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.

(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知球的面上有四点平面,,
,则球的体积与表面积的比为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一颗粒子等可能地落入如图所示的四边形ABCD内的任意位置,如果通过大量的实验发现粒子落入△BCD内的频率稳定在附近,那么点A和点C到直线BD的距离之比约为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题15分)如图,在四棱锥中,底面 , ,的中点。

(Ⅰ)证明:
(Ⅱ)证明:平面
(Ⅲ)求二面角的正切值.

查看答案和解析>>

同步练习册答案