精英家教网 > 高中数学 > 题目详情
袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为。现甲、乙两人从袋中轮流取球,甲先取,乙后取,然后甲再取…,每次取1个球,取出的球不放回,直到其中有一人取到白球时终止,用X表示取球终止时取球的总次数。
(1)求袋中原有白球的个数;
(2)求随机变量X的概率分布列及数学期望E(X)。
解:(1)设袋中原有n个白球,则从9个球中任取2个球都是白球的概率为=
,化简得n2-n-30=0
解得n=6或n=-5(舍去)
故袋中原有白球的个数为6。
(2)由题意,X的可能取值为1,2,3,4
P(X=1)=
P(X=2)=
P(X=3)=
P(X=4)=
所以X的概率分布列为:

E(x)=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个袋中装有大小相同的黑球、白球和红球,共有10个球,从袋中任意摸出1个球,得到黑球的概率是
25
,则从中任意摸出2个球,得到的都是黑球的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是
2
5
;从中任意摸出2个球,至少得到1个白球的概率是
7
9
.求:
(Ⅰ)从中任意摸出2个球,得到的数是黑球的概率;
(Ⅱ)袋中白球的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为
512
.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球部放回,直到其中有一人去的白球时终止.用X表示取球终止时取球的总次数.
(1)求袋中原有白球的个数;
(2)求随机变量X的概率分布及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区二模)一个袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是
2
5
;从袋中任意摸出2个球,至少得到1个白球的概率是
7
9
.从袋中任意摸出2个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

一个袋中装有大小相同的黑球和红球,已知袋中共有5个球,从中任意摸出1个球,得到黑球的概率是
25
.现将黑球和红球分别从数字1开始顺次编号.
(Ⅰ)若从袋中有放回地取出两个球,每次只取出一个球,求取出的两个球上编号为相同数字的概率.
(Ⅱ)若从袋中取出两个球,每次只取出一个球,并且取出的球不放回.求取出的两个球上编号之积为奇数的概率.

查看答案和解析>>

同步练习册答案