精英家教网 > 高中数学 > 题目详情
13.函数y=f(x)的图象向右平移$\frac{π}{3}$单位后与函数y=cos2x的图象重合,则y=f(x)的解析式是(  )
A.f(x)=cos(2x$+\frac{π}{3}$)B.f(x)=-cos(2x-$\frac{π}{6}$)C.f(x)=-sin(2x+$\frac{π}{6}$)D.f(x)=sin(2x-$\frac{π}{6}$)

分析 由题意,将函数y=cos2x的图象向左平移$\frac{π}{3}$单位后可得y=f(x)的图象,利用图象变换规律即可得解.

解答 解:由题意,将函数y=cos2x的图象向左平移$\frac{π}{3}$单位后,可得y=f(x)的图象,
可得:y=f(x)=cos[2(x+$\frac{π}{3}$)]=cos(2x+$\frac{2π}{3}$)=cos(2x+$\frac{π}{2}$+$\frac{π}{6}$)=-sin(2x+$\frac{π}{6}$).
故选:C.

点评 本题考查三角函数图象的平移的应用,本题解题的关键是抓住平移的方向和大小,注意这种情况下只在自变量的系数是1的情况下加或减,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\frac{{sin({A+B})}}{a+b}=\frac{sinA-sinB}{a-c}$,b=3.
(Ⅰ)求角B;
(Ⅱ)若$cosA=\frac{{\sqrt{6}}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式$\frac{1-x}{x}$≤0的解集为{x|x<0,或x≥1 }.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{\frac{1}{16}{x}^{2}(0≤x≤2)}\\{(\frac{1}{2})^{x}(x>2)}\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有5个不同实数根,则实数a的取值范围是(  )
A.(-$\frac{1}{4}$,0)B.($-\frac{1}{2}$,-$\frac{1}{4}$)C.($-\frac{1}{2}$,$-\frac{1}{4}$)∪($-\frac{1}{4}$,-$\frac{1}{8}$)D.(-$\frac{1}{2}$,$-\frac{1}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知结合M={y|y=sinx,x∈N},N={-1,0,1},则M∩N是(  )
A.{-1,0,1}B.{0,1}C.{0}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.[x]表示不超过x的最大整数,例如[1.7]=1,[-3.1]=-4,已知f(x)=x-[x](x∈R),g(x)=lg|x|,则函数h(x)=f(x)-g(x)的零点个数是(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高三年级在学期末进行的质量检测中,考生数学成绩情况如下表所示:
数学成绩[90,105)[105,120)[120,135)[135,150]
文科考生5740246
理科考生123xyz
已知用分层抽样方法在不低于135分的考生中随机抽取5名考生进行质量分析,其中文科考生抽取了1名.
(1)求z的值;
(2)如图是文科不低于135分的6名学生的数学成绩的茎叶图,计算这6名考生的数学成绩的方差;
(3)已知该校数学成绩不低于120分的文科理科考生人数之比为1:3,不低于105分的文科理科考生人数之比为2:5,求理科数学及格人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=log3(x2-2x+4)的值域为(  )
A.[1,+∞)B.[0,+∞)C.[3,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(3,m),$\overrightarrow{b}$=(1,-2),若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$2,则m=-1.

查看答案和解析>>

同步练习册答案