精英家教网 > 高中数学 > 题目详情
9.△ABC的外接圆圆心为O,半径为2,$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow 0$,则$\overrightarrow{CB}$在$\overrightarrow{CA}$方向上的投影为3.

分析 以O为原点建立平面直角坐标系,设A(2,0),根据条件作出图形,找到B,C的位置,求出BC,AC的长度及夹角.

解答 解:以O为原点建立平面直角坐标系,设A(2,0),
∵$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow 0$,∴AO是以AB,AC为邻边的平行四边形的对角线,
∵OB=OC,∴四边形ABOC是菱形,△AOC是等边三角形,∴B(1,$\sqrt{3}$),C(1,-$\sqrt{3}$).
∴BC=2$\sqrt{3}$,∠BCA=$\frac{1}{2}∠$ACO=30°.∴BC×cos∠BCA=2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=3.
故答案为:3.

点评 本题考查了平面向量在几何中的应用,根据条件作出恰当的图形是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n项和为Sn,数列{bn}是等比数列,且满足a1=3,b1=1,b2+S2=10,a5-2b2=a3
(1)求数列{an}和{bn}的通项公式;
(2)令cn=$\left\{\begin{array}{l}{\frac{2}{{S}_{n}},n为奇数}\\{{a}_{n}{b}_{n},n为偶数}\end{array}\right.$,设数列{cn}的前n项和为Tn,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设二次函数y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y2+y1的图象与x轴仅有一个交点,则(  )
A.a(x2-x1)=dB.a(x1-x2)=dC.a(x1-x22=dD.a(x1+x22=d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为$\sqrt{7}$;③圆心在直线x-3y=0上,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=|x+1|+|x-a|为偶函数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在图中的两条线段上(如图).该股票在30天内(包括第30天)的日交易量Q(万股)与时间t(天)的函数关系式为Q=40-t(0≤t≤30且t∈N).
(1)根据提供的图象,求出该种股票每股的交易价格P(元)与时间t(天)所满足的函数关系式;
(2)用y(万元)表示该股票日交易额(日交易额=日交易量×每股的交易价格),写出y关于t的函数关系式,并求出这30天中第几天日交易额最大,最大值为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成公差为2的等差数列,且5sinA=3sinB,则角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$f(x)=\frac{{lnx+{2^x}}}{x^2}$,求f′(1)=2ln2-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x>1,则$\frac{4}{x-1}$+x的最小值是5.

查看答案和解析>>

同步练习册答案