精英家教网 > 高中数学 > 题目详情

已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有


  1. A.
    2对
  2. B.
    3对
  3. C.
    4对
  4. D.
    5对
D
分析:直接利用面面垂直的判定定理判断即利用题目中的条件找出线面垂直即可.
解答:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,PD⊆面PDB
∴面PDA⊥面ABCD,面PDC⊥面ABCD,面PDB⊥面ABCD
又∵四边形ABCD为矩形
∴BC⊥CD,CD⊥AD
∵PD⊥矩形ABCD所在的平面
∴PD⊥BC,PD⊥CD
∵PD∩AD=D,PD∩CD=D
∴CD⊥面PAD,BC⊥面PDC
∵CD⊆面PDC,BC⊆面PBC
∴面PDC⊥面PAD,面PBC⊥面PCD
综上相互垂直的平面有5对
故答案选D
点评:本体主要考察了面面垂直的判定,属中档题,有一定的难度.解题的关键是熟记线面垂直的判定定理和面面垂直的判定定理!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示精英家教网,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(II)当BC边上有且仅有一个点Q使得PQ⊥OD时,求二面角Q-PD-A的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA⊥矩形ABCD所在平面,PA=AD,M、N分别是AB、PC的中点.
(1)求PD与平面ABCD所成的角;
(2)求证:MN∥平面PAD;
(3)求证:面PMC⊥面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:2014届吉林省高二4月月考理科数学试卷(解析版) 题型:解答题

如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)试建立适当的坐标系,并写出点P、B、D的坐标;

(2)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?

(3)当BC边上有且仅有一个点Q使得PQ⊥QD时,求二面角Q-PD-A的大小.

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省淮安市清江中学高二(上)期末数学试卷(解析版) 题型:解答题

(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

同步练习册答案