精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (a>0,a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.

【答案】
(1)解:∵函数 (a>0,a≠1)是奇函数.

∴f(﹣x)+f(x)=0解得m=﹣1.


(2)解:由(1)及题设知:

∴当x1>x2>1时,

∴t1<t2

当a>1时,logat1<logat2,即f(x1)<f(x2).

∴当a>1时,f(x)在(1,+∞)上是减函数.

同理当0<a<1时,f(x)在(1,+∞)上是增函数.


(3)解:由题设知:函数f(x)的定义域为(1,+∞)∪(﹣∞,﹣1),

∴①当n<a﹣2≤﹣1时,有0<a<1.由(1)及(2)题设知:f(x)在为增函数,由其值域为(1,+∞)知 (无解);

②当1≤n<a﹣2时,有a>3.由(1)及(2)题设知:f(x)在(n,a﹣2)为减函数,由其值域为(1,+∞)知

,n=1


【解析】(1)根据奇函数的定义可知f(﹣x)+f(x)=0,建立关于m的等式关系,解之即可;(2)先利用函数单调性的定义研究真数的单调性,讨论a的取值,然后根据复合函数的单调性进行判定;(3)先求函数的定义域,讨论(n,a﹣2)与定义域的关系,然后根据单调性建立等量关系,求出n和a的值.
【考点精析】解答此题的关键在于理解对数函数的单调性与特殊点的相关知识,掌握过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)满足:对y=f(x)图象上任意点P(x1 , f(x1)),总存在点P′(x2 , f(x2))也在y=f(x)图象上,使得x1x2+f(x1)f(x2)=0成立,称函数y=f(x)是“特殊对点函数”,给出下列五个函数:
①y=x1
②y=log2x;
③y=sinx+1;
④y=ex﹣2;
⑤y=
其中是“特殊对点函数”的序号是(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形的中线与中位线相交于,已知旋转过程中的一个图形,下列命题中,错误的是

A. 恒有

B. 异面直线不可能垂直

C. 恒有平面⊥平面

D. 动点在平面上的射影在线段

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,在x轴的上方作半径为1的圆Γ,与x轴相切于坐标原点O.平行于x轴的直线l1y轴交点的纵坐标为-1,Axy)是圆Γ外一动点,A与圆Γ上的点的最小距离比Al1的距离小1.

(Ⅰ)求动点A的轨迹方程;

(Ⅱ)设l2是圆Γ平行于x轴的切线,试探究在y轴上是否存在一定点B,使得以AB为直径的圆截直线l2所得的弦长不变.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2-ax+a2-13=0},B={x|x2-4x+3=0},C={x|x2—3x=0}.

(1)若A∩B=AB,求a的值;

(2)若,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分)已知圆有以下性质:

过圆上一点的圆的切线方程是.

为圆外一点,过作圆的两条切线,切点分别为则直线的方程为.

若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则垂直,即,且平分线段.

(1)类比上述有关结论,猜想过椭圆上一点的切线方程(不要求证明);

(2)过椭圆外一点作两直线,与椭圆相切于两点,求过两点的直线方程;

(3)若过椭圆外一点不在坐标轴上)作两直线,与椭圆相切于两点,求证:为定值,且平分线段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一个对称中心为,其图像上相邻两个最高点间的距离为.

(1)求函数的解析式;

(2)用“五点作图法”在给定的坐标系中作出函数在一个周期内的图像,并写出函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所著《周髀算经》中用赵爽弦图给出了勾股定理的绝妙证明,如图是赵爽弦图,图中包含四个全等的勾股形及一个小正方形,分别涂成朱色和黄色,若朱色的勾股形中较大的锐角α为 ,现向该赵爽弦图中随机地投掷一枚飞镖,则飞镖落在黄色的小正方形内的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|﹣2|x﹣a|,a>0. (Ⅰ)当a=1时,求不等式f(x)>1的解集;
(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.

查看答案和解析>>

同步练习册答案