精英家教网 > 高中数学 > 题目详情

设a、b、c均为正数,有下列4个等式:

①lg(a3+2b)=3lga+2lg2b;

②lg=lga-lgb+lgc;

③lg=lga+lgb-lgc-lgd;

④lg3lga+lgb.

其中正确的个数为

[  ]

A.1

B.2

C.3

D.4

答案:B
解析:

其中③④正确.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c均为正数,且2a=log
1
2
a
(
1
2
)b=log
1
2
b
(
1
2
)c=log2c
.则a、b、c从小到大的顺序是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c均为正数,且2a=log
1
2
a
(
1
2
)
b
=log
1
2
b
(
1
2
)
c
=log2c
,则(  )
A、a<b<c
B、c<b<a
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5 不等式证明选讲
设a,b,c均为正数,证明:
a2
b
+
b2
c
+
c2
a
≥a+b+c

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c均为正数,且a+b+c=1.证明:ab+bc+ca≤
13

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c均为正数,证明:
a2
b
+
b2
c
+
c2
a
≥a+b+c

查看答案和解析>>

同步练习册答案