精英家教网 > 高中数学 > 题目详情

【题目】为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:

(1)已知该校有名学生,试估计全校学生中,每天学习不足小时的人数.

(2)若从学习时间不少于小时的学生中选取人,设选到的男生人数为,求随机变量的分布列.

(3)试比较男生学习时间的方差与女生学习时间方差的大小.(只需写出结论)

【答案】(1)240人(2)见解析(3)

【解析】试题分析:(1)根据题意,由折线图分析可得20名学生中有12名学生每天学习不足4小时,进而可以估计校400名学生中天学习不足4小时的人数;

(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X的取值为0,1,2,3,4;由古典概型公式计算可得X=0,1,2,3,4的概率,进而可得随机变量X的分布列;

3)根据题意,分析折线图,求出男生、女生的学习时间方差,比较可得答案.

试题解析:

(1)由折线图可得共抽取了人,其中男生中学习时间不足小时的有人,女生中学习时间不足小时的有人.

∴可估计全校中每天学习不足小时的人数为: 人.

(2)学习时间不少于本的学生共人,其中男学生人数为人,故的所有可能取值为 .

由题意可得

.

所以随机变量的分布列为

∴均值 .

(3)由折线图可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱台中,点上,且,点内(含边界)的一个动点,且有平面平面,则动点的轨迹是( )

A. 平面B. 直线C. 线段,但只含1个端点D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于米的弧田,按照上述经验公式计算所得弧田面积约是

A. 平方米 B. 平方米

C. 平方米 D. 平方米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-5:不等式选讲】

已知函数f(x)=|x+1|+|x-3|.

(1)若关于x的不等式f(x)<a有解,求实数a的取值范围:

(2)若关于x的不等式f(x)<a的解集为(b, ),求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站月促销费用(万元)和产品销量(万件)的具体数据.

月份

1

2

3

4

5

6

7

8

促销费用

2

3

6

10

13

21

15

18

产品销量

1

1

2

3

3.5

5

4

4.5

(1)根据数据可知具有线性相关关系,请建立关于的回归方程(系数精确到);

(2)已知月份该购物网站为庆祝成立周年,特定制奖励制度:用(单位:件)表示日销量,若,则每位员工每日奖励元;若,每位员工每日奖励元;若,则每位员工每日奖励元.现已知该网站月份日销量服从正态分布,请你计算某位员工当月奖励金额总数大约为多少元.(当月奖励金额总数精确到百分位)

参考数据:,其中分别为第个月的促销费用和产品销量,.

参考公式:①对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为.

②若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面六个命题中,其中正确的命题序号为______________.

①函数的最小正周期为

②函数的图象关于点对称;

③函数的图象关于直线对称;

④函数的单调递减区间为

⑤将函数向右平移)个单位所得图象关于轴对称,则的最小正值为

⑥关于的方程的两个实根中,一个根比1大,一个根比-1小,则的取值范围为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是美籍法国数学家伯努瓦..曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,如图是按照一定的分形规律生产成一个数形图,则第13行的实心圆点的个数是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若存在三个不同实数使得,则的取值范围是(

A.B.C.D.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的两种芯片都已经获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图像如图所示.

1)试分别求出生产两种芯片的毛收入(千万元)与投入资金(千万元)的函数关系式;

2)现在公司准备投入亿元资金同时生产两种芯片,求可以获得的最大利润是多少.

查看答案和解析>>

同步练习册答案