精英家教网 > 高中数学 > 题目详情

函数f(x)=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是


  1. A.
    12,-15
  2. B.
    -4,-15
  3. C.
    12,-4
  4. D.
    5,-15
D
分析:先对函数f(x)求导,然后令导数为0,求出x的值,分别求出f(x)在拐点及x=0和x=3时的值,通过比较即可得出答案.
解答:∵f′(x)=6x2-6x-12,令f′(x)=0,得x=-1或x=2,
∴f(-1)=12,f(2)=-15,
∵f(0)=5,f(3)=-4,
∴f(x)max=5,f(x)min=-15,
故选D.
点评:本题考查了函数的值域,难度一般,关键是通过求导的方法求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-
1
2
x2+m(m为常数)的图象上A点处的切线与直线x+y+3=0垂直,则点A的横坐标为(  )
A、
1
2
B、-
1
3
C、
1
2
-
1
3
D、1或
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-2x3+5x2-3x+2,则f(-3)=
110
110

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=2x3-6x2+1(x∈[-2,3])的单调区间及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3+mx2+(1-m)x,(x∈R).
(1)当m=1时,解不等式f′(x)>0;
(2)若曲线y=f(x)的所有切线中,切线斜率的最小值为-11,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=2x3+3x2-12x+1的极值.

查看答案和解析>>

同步练习册答案