精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{(x+1)^{2},x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x1+x2+$\frac{1}{{x}_{3}{x}_{4}}$的值为(  )
A.0B.-1C.1D.2

分析 作出函数f(x),得到x1,x2关于x=-1对称,x3x4=1;化简条件,利用数形结合进行求解即可.

解答 解:作函数f(x)的图象如右,
∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4
∴x1,x2关于x=-1对称,即x1+x2=-2,
0<x3<1<x4
则|log2x3|=|log2x4|,
即-log2x3=log2x4
则log2x3+log2x4=0
即log2x3x4=0
则x3x4=1;
x1+x2+$\frac{1}{{x}_{3}{x}_{4}}$=-1.
故选:B.

点评 本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设f(x)=|$\frac{1}{2}$x+1|+|x|(x∈R)的最小值为a.
(1)求a;
(2)已知p,q,r是正实数,且满足p+q+r=3a,求p2+q2+r2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆C:(x-3)2+(y-4)2=1,点A(-m,0),B(m,0),若圆C上存在点P,使得∠APB=90°,则正数m的最小值与最大值的和为(  )
A.11B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知A(3,1),B(-4,0),P是椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上的一点,则PA+PB的最大值为$10+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法中正确的是(  )
A.奇函数f(x)的图象经过(0,0)点B.y=|x+1|+|x-1|(x∈(-4,4])是偶函数
C.幂函数y=x${\;}^{\frac{1}{2}}$过(1,1)点D.y=sin2x(x∈[0,5π])是以π为周期的函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.
(1)求f($\frac{π}{3}$)的值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.以(2,1)为圆心且与直线y+1=0相切的圆的方程为(  )
A.(x-2)2+(y-1)2=4B.(x-2)2+(y-1)2=2C.(x+2)2+(y+1)2=4D.(x+2)2+(y+1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)是R上的奇函数,且当x>0时,f(x)=x-1,则x<0时f(x)=(  )
A.-x-1B.x+1C.-x+1D.x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=log2x-$\frac{1}{x-1}$的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案