精英家教网 > 高中数学 > 题目详情

设点F1、F2为双曲线C:的左、右焦点,P为C上一点,若△PF1F2的面积为6,则=                

9

解析试题分析:由方程可知

考点:双曲线的几何性质及向量的坐标运算
点评:平面几何中涉及到向量运算的一般都要转化为点的坐标进行化简

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知经过抛物线的焦点的直线交抛物线于两点,满足,则弦的中点到准线的距离为____.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知为椭圆的两个焦点,过的直线交椭圆于两点。若,则=          

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知为直角三角形,三边长分别为,其中斜边AB=,若点在直线上运动,则的最小值为              

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

中 ,,以点为一个焦点作一个椭圆,使这个椭圆
的另一焦点在边上,且这个椭圆过两点,则这个椭圆的焦距长为     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在△ABC中,角A,B,C的对边分别a,b,c,若.则直线被圆所截得的弦长为       

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知椭圆方程为),F(-c,0)和F(c,0)分别是椭圆的左 右焦点.
①若P是椭圆上的动点,延长到M,使=,则M的轨迹是圆;
②若P是椭圆上的动点,则
③以焦点半径为直径的圆必与以长轴为直径的圆内切;
④若在椭圆上,则过的椭圆的切线方程是
⑤点P为椭圆上任意一点,则椭圆的焦点角形的面积为.
以上说法中,正确的有                

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设AB是平面的斜线段,A为斜足,若点P在平面内运动,使得△ABP的面积为定值,则动点P的轨迹是     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

过双曲线的右焦点F作圆的切线FM(切点为M),交y轴于点P,若M为线段FP的中点, 则双曲线的离心率是       

查看答案和解析>>

同步练习册答案