精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)当时,求的最小值.

(Ⅱ)若在区间上有两个极值点

(i)求实数的取值范围;

(ii)求证:.

【答案】(Ⅰ);(Ⅱ)(i);(ii)详见解析.

【解析】

(Ⅰ)求出,列表讨论的单调性,问题得解。

(Ⅱ)(i)由在区间上有两个极值点转化成有两个零点,即有两个零点,求出,讨论的单调性,问题得解。

(ii)由,将转化成,由得单调性可得,讨论的单调性即可得证。

解:(Ⅰ)当时,,令,得.

的单调性如下表:

-

0

+

单调递减

单调递增

易知.

(Ⅱ)(i).令,则.

,得.

的单调性如下表:

-

0

+

单调递减

单调递增

在区间上有两个极值点,即在区间上有两个零点,

结合的单调性可知,,即.

所以,即的取值范围是.

(ii)由(i)知,所以.

,结合的单调性可知,.

,则.当时,

所以上单调递增,而

因此.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左焦点为,其中四个顶点围成的四边形面积为.

1)求椭圆的标准方程;

2)过点的直线与曲线交于两点,设的中点为两点为椭圆上关于原点对称的两点,且),求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数,.

1)若曲线与直线的一个交点纵坐标为,求的值;

2)若曲线上的点到直线的最大距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),得到如图5的茎叶图,整数位为茎,小数位为叶,如27.1mm的茎为27,叶为1.

(1)试比较甲、乙两种棉花的纤维长度的平均值的大小及方差的大小;(只需写出估计的结论,不需说明理由)

(2)将棉花按纤维长度的长短分成七个等级,分级标准如表:

试分别估计甲、乙两种棉花纤维长度等级为二级的概率;

(3)为进一步检验甲种棉花的其它质量指标,现从甲种棉花中随机抽取4根,记为抽取的棉花纤维长度为二级的根数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(k为常数)是实数集R上的奇函数,其中e为自然对数的底数。

(1)求k的值;

(2)讨论关于x的方程如的根的个数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的曲线图是2020125日至2020212日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断正确的是(

A.131日陕西省新冠肺炎累计确诊病例中西安市占比超过了

B.125日至212日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势

C.22日后到210日陕西省新冠肺炎累计确诊病例增加了97

D.28日到210日西安市新冠肺炎累计确诊病例的增长率大于26日到28日的增长率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018614日,世界杯足球赛在俄罗斯拉开帷幕,世界杯给俄罗斯经济带来了一定的增长,某纪念商品店的销售人员为了统计世界杯足球赛期间商品的销售情况,随机抽查了该商品商店某天200名顾客的消费金额情况,得到如图频率分布表:将消费顾客超过4万卢布的顾客定义为足球迷”,消费金额不超过4万卢布的顾客定义为“非足球迷”。

消费金额/万卢布

合计

顾客人数

9

31

36

44

62

18

200

(1)求这200名顾客消费金额的中位数与平均数(同一组中的消费金额用该组的中点值作代表;

(2)该纪念品商店的销售人员为了进一步了解这200名顾客喜欢纪念品的类型,采用分层抽样的方法从“非足球迷”,“足球迷”中选取5人,再从这5人中随机选取3人进行问卷调查,则选取的3人中“非足球迷”人数的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示1,已知四边形ABCD满足EBC的中点.沿着AE翻折成,使平面平面AECDFCD的中点,如图所示2.

1)求证:平面

2)求AE到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,延长交椭圆于点的周长为8.

(1)求的离心率及方程;

(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案