精英家教网 > 高中数学 > 题目详情
(2012•许昌二模)在直角坐标系xOy中,直线l的参数方程为
x=3-
2
2
t
y=
5
+
2
2
t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的圆心到直线l的距离;
(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3,
5
),求|PA|+|PB|.
分析:(I)圆C的极坐标方程两边同乘ρ,根据极坐标公式进行化简就可求出直角坐标方程,最后再利用三角函数公式化成参数方程;
(Ⅱ)将直线l的参数方程代入圆C的直角坐标方程,得即t2-3
2
t+4=0
,根据两交点A,B所对应的参数分别为t1,t2,利用根与系数的关系结合参数的几何意义即得.
解答:解:(Ⅰ)由ρ=2
5
sinθ
,可得x2+y2-2
5
y=0
,即圆C的方程为x2+(y-
5
)2=5

x=3-
2
2
t
y=
5
+
2
2
t
可得直线l的方程为x+y-
5
-3=0

所以,圆C的圆心到直线l的距离为
|0+
5
-
5
-3|
2
=
3
2
2
.         …(5分)
(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得(3-
2
2
t)2+(
2
2
t)2=5
,即t2-3
2
t+4=0

由于△=(3
2
)2-4×4=2>0
.故可设t1、t2是上述方程的两个实根,
所以
t1+t2=3
2
t1t2=4.
,又直线l过点P(3,
5
)

故由上式及t的几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2=3
2
.       …(10分)
点评:此题考查学生会将极坐标方程和参数方程分别化为直角坐标方程和普通方程,掌握直线参数方程中参数的几何意义,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌二模)设F为抛物线C:y2=2px(p>0)的焦点,过F且与抛物线C对称轴垂直的直线被抛物线C截得线段长为4.
(1)求抛物线C方程.
(2)设A、B为抛物线C上异于原点的两点且满足FA⊥FB,延长AF、BF分别抛物线C于点C、D.求:四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)设a≥0,函数f(x)=[x2+(a-3)x-2a+3]exg(x)=2-a-x-
4x+1

( I)当a≥1时,求f(x)的最小值;
( II)假设存在x1,x2∈(0,+∞),使得|f(x1)-g(x2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)若椭圆
x2
m
+
y2
8
=1
的焦距是2,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)设AB=1,求多面体ABCDE的体积.

查看答案和解析>>

同步练习册答案