精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,四边形ABCD为正方形,平面ACD,且EPD的中点.

(Ⅰ)证明:平面平面PAD

(Ⅱ)求直线PA与平面AEC所成角的正弦值.

【答案】(Ⅰ)见解析;(Ⅱ)

【解析】

1)根据线面垂直证明面面垂直;(2)建立空间直角坐标系,分别求出向量和平面的法向量,再由向量数量积公式,即得.

(Ⅰ)证明:∵平面ABCD平面ABCD,∴

∵四边形ABCD为正方形,∴,又,∴平面PAD

平面PCD,∴平面平面PAD

(Ⅱ)如图,以A为坐标原点,ABADAP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,

,∴

设平面AEC的法向量为,则,即

,得平面AEC的一个法向量为,∴

∴直线PA与平面AEC所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定点,动点满足.

1)求动点的轨迹方程,并说明方程表示的曲线类型;

2)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】fx)=|lnx|,若函数gx)=fx)-ax在区间(0,4)上有三个零点,则实数a的取值范围是(

A. (0,B. ,e)C. D. (0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前项和为__________.在①;②;③这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中

1)当时,设函数,求函数的极值.

2)若函数在区间上递增,求的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点M是棱长为2的正方体ABCD-A1B1C1D1的棱AD的中点,点P在面BCC1B1所在的平面内,若平面D1PM分别与平面ABCD和平面BCC1B1所成的锐二面角相等,则点P到点C1的最短距离是(

A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某国营企业集团公司现有员工1000名,平均每人每年创造利润10万元.为了激化内部活力,增强企业竞争力,集团公司董事会决定优化产业结构,调整出)名员工从事第三产业;调整后,他们平均每人每年创造利润万元,剩下的员工平均每人每年创造的利润可以提高.

(Ⅰ)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?

(Ⅱ)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则实数的取值范围是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的极坐标方程和曲线的直角坐标方程;

2)若射线与曲线相交于点,将逆时针旋转后,与曲线相交于点,且,求的值.

查看答案和解析>>

同步练习册答案