精英家教网 > 高中数学 > 题目详情

(12分)已知函数
(1)若上恒为增函数,求的取值范围;
(2)求在区间上的最大值.

解:(1)
上恒递增,且在处连续,
时,成立,即上恒成立.

(2)由(1)知时,递增,故时,
时,令,得

时,
时,
即当时,
故对于
时,
时,

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分15分)已知函数
(Ⅰ)若为定义域上的单调函数,求实数m的取值范围;
(Ⅱ)当时,求函数的最大值;
(Ⅲ)当,且时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时,都取得极值。
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)已知函数f(x)=x2-(1+2a)x+alnx(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)若曲线处的切线互相平行,求的值;
(2)求的单调区间;
(3)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数f(x)=,g(x)=alnx,a∈R.
(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2)设函数h(x)=f(x)-g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;
(3)对(2)中的φ(a),证明:当a∈(0,+∞)时,φ(a)≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的图象为曲线, 函数的图象为直线.
(Ⅰ) 当时, 求的最大值;
(Ⅱ) 设直线与曲线的交点的横坐标分别为, 且,
求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数,则 (    )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知点)在第三象限,则角在  

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案