精英家教网 > 高中数学 > 题目详情
已知A={x|
x-5
2
<-1},若?AB={x|x+4<-x},则集合B=(  )
分析:由已知中A={x|
x-5
2
<-1},CAB={x|x+4<-x},解不等式分别求出集合A与集合CAB,进而根据B=CA(CAB),结合补集及其运算法则,得到答案.
解答:解:∵A={x|
x-5
2
<-1}={x|x<3}
CAB={x|x+4<-x}={x|x<-2},
∴B=CA(CAB)={x|-2≤x<3}
故选A
点评:本题考查的知识点是补集及其运算,不等式的解法,其中根据B=CA(CAB),将问题转化为求已知集合CAB关于集合A补集的运算,是解答本题的关键,解答时易忽略CAB中不含元素2,则2∈B,而错解为C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知A={x|x<-1或x>5},B={x|a≤x<a+4},若A?B,则实数a的取值范围是
a≤-5或a>5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x<3},B={x|-1<x<5},则A∪B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|1<x<5},B={x|2x-1<4},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x<3},B={x|-1<x<5},则CA∪B(A∩B)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB两点的坐标分别为(0,-5)和(0,5),直线MAMB的斜率之积为-,则M的轨迹方程是(  )

A.                  B. (x≠±5)

C.                 D.  (x≠0)

查看答案和解析>>

同步练习册答案