精英家教网 > 高中数学 > 题目详情
15.倾斜角是45°,并且与原点的距离是5$\sqrt{2}$的直线的方程为(  )
A.x-y-10=0B.x-y-10=0或x-y+10=0
C.x-y+5$\sqrt{2}$=0D.x-y+5$\sqrt{2}$=0或x-y-5$\sqrt{2}$=0

分析 求出倾斜角是45°的直线的斜率,设出直线方程,利用原点与直线的距离为5,求出直线方程中的未知数,即可确定直线方程.

解答 解:因直线斜率为tan45°=1,可设直线方程y=x+b,化为一般式x-y+b=0,
由直线与原点距离是5$\sqrt{2}$,得 $\frac{|0-0+b|}{\sqrt{1+1}}$=5$\sqrt{2}$⇒|b|=10,
∴b=±10,
所以直线方程为x-y+10=0,或x-y-10=0,
故选:B.

点评 本题考查点到直线的距离公式,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知m,n∈R,函数f(x)=ln(x+m)的图象与函数g(x)=ex-1+n的图象在x=1处有公共的切线.
(1)求m,n的值;
(2)设b>a>0,求证:$\sqrt{ab}<\frac{b-a}{f(b)-f(a)}<\frac{a+b}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知角α的终边在如图所示的阴影部分内,试指出角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若平面α∥平面β,l?α,则l与β的位置关系是(  )
A.l与β相交B.l与β平行C.l在β内D.无法判定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)为单调且二阶可导函数,其反函数为x=g(y),且已知f(1)=2,f′(1)=-$\frac{1}{\sqrt{3}}$,f″(1)=1,求g″(2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法中正确的是(  )
①一个平面内只有一对不共线的向量可作为基底;
②两个非零向量平行,则它们所在直线平行;
③△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}>0$,则△ABC为锐角三角形;
④△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}<0$,则△ABC为钝角三角形.
A.B.C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题“?x>0,x2-1<0”的否定是?x>0,x2-1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为(  )
A.6cm2B.$\frac{{3\sqrt{5}}}{4}$cm2C.$\frac{2}{3}$$\sqrt{3}$cm2D.3$\sqrt{5}$cm2

查看答案和解析>>

同步练习册答案