精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前n项和为

1)若,求证:,其中

2)若对任意均有,求的通项公式;

3)若对任意均有,求证:

【答案】1)证明见解析 ;(2 ;(3)证明见解析.

【解析】

(1)求出数列的通项公式,代入所证明的不等式转化求解即可;

(2)利用递推关系,说明是首项为,公比为3的等比数列,然后求解即可;

(3)化简数列的递推关系式,得出是首项为1,公差为1的等差数列,求出的通项公式,用倒序相加法求数列的前项和,利用(1)结论进行放缩,然后证明即可.

解:(1)由已知为等差数列,且


2

所以是首项为,公比为3的等比数列,

3

是首项为1,公差为1的等差数列,

由(1)知

证明:

两式相加得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数在其定义域上既是奇函数,又是增函数的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

)当,判断的奇偶性,并说明理由;

)当,,的值;

)若,且对任何不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线l过定点

(1)若直线l与圆C相切,求直线l的方程;

(2)若直线l与圆C相交于P,Q两点,求的面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆上的一动点,点,点在线段上,且满足.

(1)求点的轨迹的方程;

(2)设曲线轴的正半轴,轴的正半轴的交点分别为点,斜率为的动直线交曲线两点,其中点在第一象限,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为五个等级,等级等级等级等级共.其中等级为不合格,原则上比例不超过.该省某校高二年级学生都参加学业水平考试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有1000名学生,则估计该年级拿到级及以上级别的学生人数有(

A.45B.660C.880D.900

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程和的直角坐标方程;

2)设是曲线上一点,此时参数,将射线绕原点逆时针旋转交曲线于点,记曲线的上顶点为点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于下列命题:①对于实数,若,则;②的充分而不必要条件;③在(增减算法统宗》中有这样一则故事: 三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关则此人第二天走了九十六里路;④设函数的定又域为R,若存在常数:,使对一切实数x均成立、则称倍约束函数,所以函数"倍约束函数其中所有真命题的序号是_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年年底,某城市地铁交通建设项目已经基本完成,为了解市民对该项目的满意度,分别从不同地铁站点随机抽取若干市民对该项目进行评分(满分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:

满意度评分

低于60

60分到79

80分到89

不低于90

满意度等级

不满意

基本满意

满意

非常满意

已知满意度等级为基本满意的有人.

(1)求频率分布于直方图中的值,及评分等级不满意的人数;

(2)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.

查看答案和解析>>

同步练习册答案