精英家教网 > 高中数学 > 题目详情
11.已知集合$A=\left\{{\left.x\right|x=\frac{k}{2},k∈Z}\right\},B=\left\{{\left.x\right|x=\frac{k}{4},k∈Z}\right\}$,则(  )
A.A⊆BB.B⊆A
C.A=BD.A与B的关系不确定

分析 即集合A,B中的条件变形为:集合A:x=$\frac{k}{2}$=$\frac{2k}{4}$,k∈Z,集合B:x=$\frac{k}{4}$,k∈Z,对照可知,A是B的子集.

解答 解:对于集合A:x=$\frac{k}{2}$=$\frac{2k}{4}$,k∈Z,
当分母为4时,分子为2k,能取遍全体偶数,
而对于集合B:x=$\frac{k}{4}$,k∈Z,
当分母为4时,分子为k,能取遍全体整数,
显然,“全体偶数”是“全体整数”的子集,
即A是B的子集(也是真子集),
故答案为:A.

点评 本题主要考查了集合间包含关系的判断,对集合中的条件合理变形是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2sin(2x-$\frac{π}{3}$)+1.
(Ⅰ)求函数f(x)图象的对称轴的方程和对称中心的坐标;
(Ⅱ)求函数f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调递增区间;
(Ⅲ)求函数f(x)在[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.幂函数y=f(x)的图象过点$(\frac{1}{2},4)$,那么f(4)的值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{sin2x+cos2x+1}{2cosx}$
(Ⅰ)求函数f(x)的定义域
(Ⅱ)若$f({α+\frac{π}{4}})=\frac{{3\sqrt{2}}}{5}$,求cosα的值
(Ⅲ)在(Ⅱ)条件下,若α是第四象限角,求$cos({π-2α})+cos({2α-\frac{π}{2}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin182°cos28°-cos2°sin28°的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.《算法通宗》是我国古代内容丰富的数学名著,书中有如下问题:“远望巍巍栽塔七层红灯点点倍加增,共灯三百八十一,请问塔顶几盏灯?”(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=sin(x+\frac{π}{6})cos(x+\frac{π}{6})$,给出下列结论:
①f(x)的最小正周期为π
②f(x)的一条对称轴为x=$\frac{π}{6}$
③f(x)的一个对称中心为$(\frac{π}{6},0)$
④$f(x-\frac{π}{6})$是奇函数
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$\root{6}{(a-b)^{6}}$(a<b)=b-a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x+\frac{1}{2})$为奇函数,g(x)=f(x)+1,若${a_n}=g(\frac{n}{2016})$,则数列的前2015项之和为(  )
A.2016B.2015C.2014D.2013

查看答案和解析>>

同步练习册答案