分析 先求出双曲线的方程,再求出B,C的坐标,即可得出结论.
解答 解:由题意,$\left\{\begin{array}{l}{\frac{9}{{a}^{2}}-\frac{4}{{b}^{2}}=1}\\{\frac{{a}^{2}+{b}^{2}}{{a}^{2}}=5}\end{array}\right.$,∴a2=8,b2=32,
∴双曲线的方程为$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{32}$=1,
设B(x1,y1),C(x2,y2),
设AB的方程为y-2=k(x+3),代入双曲线方程,可得(4-k2)x2-2k(3k+2)x-(3k+2)2-32=0,
∴-3+x1=$\frac{6{k}^{2}+4k}{4-{k}^{2}}$,
∴x1=$\frac{3{k}^{2}+4k+12}{4-{k}^{2}}$,y1=$\frac{2{k}^{2}+24k+8}{4-{k}^{2}}$,
∴B($\frac{3{k}^{2}+4k+12}{4-{k}^{2}}$,$\frac{2{k}^{2}+24k+8}{4-{k}^{2}}$),
同理C($\frac{3{k}^{2}-4k+12}{4-{k}^{2}}$,$\frac{2{k}^{2}-24k+8}{4-{k}^{2}}$).
∴kBC=$\frac{48}{8}$-6.
故答案为:6.
点评 本题考查了双曲线的标准方程及其性质、直线与双曲线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com