精英家教网 > 高中数学 > 题目详情
P(x0,y0)(x0≠±a)是双曲线E:上一点,M,N分别是双曲线E的左、右定点,直线PM,PN的斜率之积为
(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上的一点,满足,求λ的值。
解:(1)已知双曲线E:
在双曲线上,M,N分别为双曲线E的左右顶点,
所以M(-a,0),N(a,0),
直线PM,PN斜率之积为
,比较得
(2)设过右焦点且斜率为1的直线L:y=x-c,交双曲线E于A,B两点,
则不妨设
,点C在双曲线E上:
, ①
又联立直线L和双曲线E方程消去y得:
由韦达定理得:
代入①式得:或λ=-4。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
a
x
(a>0),设F(x)=f(x)+g(x)

(I)求函数F(x)的单调区间;
(II)若以函数y=F(x)(x∈(0,3])的图象上任意一点P(x0,y0)为切点的切线的斜率k≤
1
3
恒成立,求实数a的最小值;
(III)是否存在实数m,使得函数y=g(
2a
x2+1
)+m-1
的图象与函数y=f(1+x2)的图象恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆M和圆C1:(x+1)2+y2=9内切,并和圆C2:(x-1)2+y2=1外切.
(1)求动圆圆心M的轨迹方程;
(2)过圆C1和圆C2的圆心分别作直线交(1)中曲线于点B、D和A、C,且AC⊥BD,垂足为P(x0,y0),设点E(-2,-1),求|PE|的最大值;
(3)求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)已知函数f(x)=ax2-x(a∈R,a≠0),g(x)=lnx
(1)当a=1时,判断函数f(x)-g(x)在定义域上的单调性;
(2)若函数y=f(x)与y=g(x)的图象有两个不同的交点M,N,求a的取值范围.
(3)设点A(x1,y1)和B(x2,y2)(x1<x2)是函数y=g(x)图象上的两点,平行于AB的切线以P(x0,y0)为切点,求证x1<x0<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁一模)如图,已知半椭圆C1
x2
a2
+y2=1(a>1,x≥0)的离心率为
2
2
,曲线C2是以半椭圆C1的短轴为直径的圆在y轴右侧的部分,点P(x0,y0)是曲线C2上的任意一点,过点P且与曲线C2相切的直线l与半椭圆C1交于不同点A,B.
(I)求a的值及直线l的方程(用x0,y0表示);
(Ⅱ)△OAB的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数f(x)=lnx+
a
x
(a>0).
(1)求f(x)的单调区间;
(2)如果P(x0,y0)是曲线y=f(x)上的点,且x0∈(0,3),若以P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值.

查看答案和解析>>

同步练习册答案