精英家教网 > 高中数学 > 题目详情
4.设偶函数f(x)满足f(x)=2x-4(x≥0),若f(x-2)>0,则x的取值范围是(  )
A.(-∞,0)B.(0,4)C.(4,+∞)D.(-∞,0)∪(4,+∞)

分析 先利用偶函数的图象关于y轴对称得出f(x)>0的解集,再运用整体思想求f(x-2)>0的解集.

解答 解:根据题意,当x≥0时.f(x)=2x-4,
令f(x)=2x-4>0,解得x>2,
又∵f(x)是定义在R上的偶函数f(x),其图象关于y轴对称,
∴不等式f(x)>0在x∈R的解集为(-∞,-2)∪(2,+∞),
因此,不等式f(x-2)>0等价为:x-2∈(-∞,-2)∪(2,+∞),
解得x∈(-∞,0)∪(4,+∞),
故选D.

点评 本题主要考查了指数型复合函数的图象和性质,涉及函数的奇偶性和不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.以下五个说法:
①函数y=x2在R上是增函数.   
②函数$y=\frac{1}{x}$的单调递减区间是(-∞,0)∪(0,+∞).
③实数集可以表示为{R}.  
④方程$\sqrt{2x-1}+|{2y+1}|=0$的解集是$\{(\frac{1}{2},-\frac{1}{2})\}$.
⑤集合M={y|y=x2+1,x∈R}与集合N={(x,y)|y=x2+1,x∈R}表示同一个集合.
其中正确的命题序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=x2-4x-4在区间[t,t+1](t∈R)上的最小值记为g(t).
(1)试写出g(x)的函数表达式;
(2)求g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{an},若a${\;}_{n}^{2}$-a${\;}_{n-1}^{2}$=k(n≥2,n∈N*,k为常数),则称{an}为等方差数列.
(1)若数列{bn}是等方差数列,b1=1,b2=3,写出所有满足条件的数列{bn}的前4项;
(2)若等方差数列{an}满足a1=2,a2=2$\sqrt{2}$,an>0,设数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,是否存在正整数p,q,使不等式Tn>$\sqrt{pn+q}$-1对一切n∈N*都成立?若存在,求出p,q的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,a、b、c分别是角A、B、C的对边,且$\frac{cosB}{cosC}=\frac{b}{2a-c}$.
(1)求角B的大小;
(2)若b=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|.
(1)指出f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|的基本性质(两条即可,结论不要求证明),并作出函数f(x)的图象;
(2)关于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=ln$\frac{1}{2}$,b=e${\;}^{\frac{1}{2}}$,c=2-e(e≈2.71828…),则a,b,c的大小关系为(  )
A.b<a<cB.a<b<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角x≠$\frac{kπ}{2}$(k∈Z),函数F(x)=$\frac{|sinx|}{cos(\frac{3π}{2}+x)}$-$\frac{sin(\frac{3π}{2}-x)}{|cosx|}$+$\frac{|tanx|}{tanx}$,则F(x)可能取值的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,长方体ABCD-A1B1C1D1的底面边长均为1,侧棱AA1=2,M,N分别是A1C1,A1A的中点,
(1)求$\overrightarrow{CN}$的长;
(2)求cos<$\overrightarrow{C{A}_{1}}$,$\overrightarrow{D{C}_{1}}$>的值;
(3)求证:A1C⊥D1M.

查看答案和解析>>

同步练习册答案