精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴非负半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的极坐标方程及直线的直角坐标方程;

(2)设直线与曲线交于两点,求.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:

(1)对于圆的方程,消去参数即可得到直角坐标方程,然后写出极坐标方程即可,对于直线的极坐标方程,将其转化为直角坐标方程即可;

(2)求解弦长的问题首先考查圆心到直线的距离,然后结合平面几何相关结合求解弦长即可.

试题解析:

(Ⅰ)圆 (为参数)得曲线的直角坐标方程:

所以它的极坐标方程为

直线的直角坐标方程为

(Ⅱ)直线的直角坐标方程:

圆心到直线的距离,圆的半径

弦长

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如下图,三棱柱中,侧面 底面 ,且,O中点.

(Ⅰ)证明: 平面

(Ⅱ)求直线与平面所成角的正弦;

(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:直线PB1⊥平面PAC.
(3)求三棱锥B﹣PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点在点处的切线交轴于点,直线经过点且垂直于轴.

1)求线段的长;

2)设不经过点的动直线于点,交于点,若直线的斜率依次成等差数列,试问: 是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某生产线上随机抽取件产品,测量这些产品的某项技术指标值,得到的频率分布直方图如图.

(1)估计该技术指标值平均数

(2)在直方图的技术指标值分组中,以落入各区间的频率作为取该区间值的频率,若,则产品不合格,现该企业每天从该生产线上随机抽取件产品检测,记不合格产品的个数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单凋性;

(2)若存在使得对任意的不等式(其中e为自然对数的底数)都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.

(1)求数列{an}、{bn}的通项公式;

(2)求数列{an·bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分图是某市今年1月份前30天空气质量指数AQI的趋势图.

(1)根据该图数据在答题卷中完成频率分布表,并在图中补全这些数据的频率分布直方图;

(2)空气质量指数AQI小于100时,表示空气质量优良某人随机选择按30天计某一天

到达该市,根据以上信息,能否认为此人到达当天空气质量优良的可能性超过60%?

查看答案和解析>>

同步练习册答案