精英家教网 > 高中数学 > 题目详情

【题目】“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:

运动达人

参与者

合计

男教师

60

20

80

女教师

40

20

60

合计

100

40

140

(1)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?

(2)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.

参考公式:,其中.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(1)不能在犯错误的概率不超过0.05的前提下认为获得“运动达人”称号与性别有关.(2)见解析

【解析】

1)由列联表数据计算出,从而可得结论;(2)根据分层抽样原则可知男教师有人,女教师有人,从而可知的所有可能取值有;根据超几何分布概率公式可求得每个取值对应的概率,从而得到分布列;利用数学期望计算公式求得期望.

(1)根据列联表数据得:

不能在犯错误的概率不超过的前提下认为获得“运动达人”称号与性别有关

(2)根据分层抽样方法得:男教师有人,女教师有

由题意可知,的所有可能取值有

的分布列为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱椎中,侧棱底面分别是线段的中点,过线段的中点的平行线,分别交于点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若时,函数的图像恒在直线上方,求实数的取值范围;

(2)证明:当时.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,恰好与抛物线的焦点重合,过椭圆的左焦点且与轴垂直的直线被椭圆截得的线段长为3.

(1)求椭圆的方程;

(2)已知点,直线,过斜率为的直线与椭圆交于两点,与直线交于点,若直线的斜率分别是,求证:无论取何值,总满足的等差中项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,其余棱长均为是棱上的一点,分别为棱的中点.

(1)求证: 平面平面

(2)若平面,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中

(1)若,求的值;

(2)对于每一个给定的正整数,求关于的方程所有解的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ab为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与ab都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:

当直线ABa60°角时,ABb30°角;

当直线ABa60°角时,ABb60°角;

直线ABa所成角的最小值为45°;

直线ABa所成角的最大值为60°.

其中正确的是________.(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A4纸是生活中最常用的纸规格.A系列的纸张规格特色在于:①A0A1A2A5,所有尺寸的纸张长宽比都相同.②在A系列纸中,前一个序号的纸张以两条长边中点连线为折线对折裁剪分开后,可以得到两张后面序号大小的纸,比如1A0纸对裁后可以得到2A1纸,1A1纸对裁可以得到2A2纸,依此类推.这是因为A系列纸张的长宽比为1这一特殊比例,所以具备这种特性.已知A0纸规格为84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4纸的长度为(  )

A.厘米B.厘米C.厘米D.厘米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),g(x)分别由下表给出,

f[g(1)]的值为________,满足f[g(x)]>g[f(x)]x的值是________

查看答案和解析>>

同步练习册答案