【题目】已知函数f(x)=e1+|x|﹣ ,则使得f(x)>f(2x﹣1)成立的x的取值范围是( )
A.
B.
C.(﹣ , )
D.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点, 轴正半轴为极轴建立坐标系,直线的极坐标方程为,曲线的参数方程为,( 为参数).
(Ⅰ)求直线的直角坐标方程和曲线的普通方程;
(Ⅱ)曲线交轴于两点,且点, 为直线上的动点,求周长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数(),,
(Ⅰ) 试求曲线在点处的切线l与曲线的公共点个数;(Ⅱ) 若函数有两个极值点,求实数a的取值范围.
(附:当,x趋近于0时, 趋向于)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两焦点为, , 为椭圆上一点,且到两个焦点的距离之和为6.
(1)求椭圆的标准方程;
(2)若已知直线,当为何值时,直线与椭圆有公共点?
(3)若,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax﹣(m﹣2)a﹣x (a>0且a≠1)是定义域为R的奇函数.
(1)求m的值;
(2)若f(1)<0,试判断y=f(x)的单调性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范围;
(3)若f(1)= ,g(x)=a2x+a﹣2x﹣2f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数,当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.
(1)当0<x≤20时,求v关于x的函数表达式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为,两天是否下雨互不影响,若两天都下雨的概率为
(1)求及基地的预期收益;
(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为万元,有雨时收益为万元,且额外聘请工人的成本为元,问该基地是否应该额外聘请工人,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com