精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2-(a+2)x+lnx

(1)当a=1时,求曲线yf(x)在点(1,f(1))处的切线方程;

(2)若对任意x1x2∈(0,+∞),x1x2,有f(x1)+2x1f(x2)+2x2恒成立,求a的取值范围.

【答案】(1) y=-2.

(2) [0,8].

【解析】分析:(1)求出导函数,可得切线斜率,切线方程为,化简即可;

(2)若对任意x1x2(0,+∞),x1x2,有f(x1)+2x1f(x2)+2x2恒成立,说明函数上的增函数,从而上恒成立,再利用二次函数的性质可得的范围.

详解: (1)a=1时,f(x)=x2-3x+lnxf(1)=-2,f ′(x)=2x-3+

∴曲线yf(x)在点(1,f(1))处的切线斜率kf ′(1)=0;

所以在点(1,f(1))处的切线方程为 y=-2;

(2)g(x)=f(x)+2xax2ax+lnx,(x>0);由题意知g(x)(0,+∞)单调递增,所以g′(x)=2axa≥0(0,+∞)上恒成立,即2ax2ax+1≥0(0,+∞)上恒成立;令h(x)=2ax2ax+1,(x>0);

则①若a=0,h(x)=1≥0恒成立;

②若a<0,二次函数h(x)≥0不恒成立,舍去;

③若a>0,二次函数h(x)≥0恒成立,只需满足最小值h()≥0,即+1≥0,解得0<a≤8;

综上,a的取值范围是[0,8].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学用五点法画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

1)请将上表数据补充完整;函数的解析式为 (直接写出结果即可);

2)根据表格中的数据作出一个周期的图象;

3)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

A

合计

B

(1)根据已知条件求出上面的列联表中的A和B;用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)为了研究心肺疾病是否与性别有关,请计算出统计量,并说明是否有的把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线方程为,点为坐标原点,不过点的直线与抛物线交于不同的两点

(1)如果直线过点,求证:

(2)如果,证明直线必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若对任意x∈R,f(x)≥0恒成立,求a的范围;
(3)若方程f(x)=x有三个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量表示,数据如下表:

特征量

1

2

3

4

5

6

7

98

88

96

91

90

92

96

9.9

8.6

9.5

9.0

9.1

9.2

9.8

(1)求关于的线性回归方程(计算结果精确到0.01);

(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1)

附:回归直线方程中斜率和截距的最小二乘法估计公式分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 ,其中

(1)试讨论函数 的单调性;

(2)已知当 (其中 是自然对数的底数)时,在 上至少存在一点 ,使 成立,求 的取值范围;

(3)求证:当 时,对任意 ,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),f(﹣ )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业招聘大学毕业生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为等,小于80分者为等.

(1)求女生成绩的中位数及男生成绩的平均数;

(2)如果用分层抽样的方法从等和等中共抽取5人组成“创新团队”,则从等和等中分别抽几人?

(3)在(2)问的基础上,现从该“创新团队”中随机抽取2人,求至少有1人是等的概率.

查看答案和解析>>

同步练习册答案