精英家教网 > 高中数学 > 题目详情
规定:两个连续函数(图象不间断)f(x),G(x)在闭区间[a,b]上都有意义,我们称函数|f(x)-G(x)|在[a,b]上的最大值叫做函数f(x)与G(x)在[a,b]上的“绝对差”.

(1)试求函数f(x)=x2G(x)=x(x-2)(x-4)在闭区间[-3,3]上的“绝对差”;

(2)设函数f(x)=x2及函数hm(x)=(a+b)x+m都定义在已知区间[a,b]上,记f(x)与hm(x)的“绝对差”为D(m).若D(m)的最小值是D(m0),则称f(x)可用hm0(x)“替代”,试求m0的值,使f(x)可用hm0(x)“替代”.

解:(1)记F(x)=f(x)-g(x),?

F′(x)=f′(x)-g′(x)=-3x2-2x+8.?

F′(x)=0,得x=-2或x=.                                                                               ?

F(-2)=-12,F()=,F(3)=-12,F(-3)=-6.                                                     ?

∴-12≤F(x)≤.?

故所求“绝对差”为12.                                                                                      ?

(2)由于f(x)-hM(x)=x2-[(a+b)x+M],f′(x)-hM′(x)=2x-(a+b),?

从而令f′(x)-hM′(x)=0,得x=.                                                                     ?

D(M)=Max{|f()-hM()|,|f(a)-hM(a)|,|f(b)-hM(b)|}?

=Max{|M+|,|M+AB|}.                                                                                 ?

由于|M+|2-|M+AB|2= (M+),?

D(M)=                                                      ?

∴当M=M0=-时,D(M0)最小.?

故当M0=-(a2+6AB+b2)时,f(x)可用h(x)“替代”.

练习册系列答案
相关习题

同步练习册答案