精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距和长半轴长都为2.过椭圆的右焦点作斜率为的直线与椭圆相交于两点.

1)求椭圆的方程;

2)设点是椭圆的左顶点,直线分别与直线相交于点.求证:以为直径的圆恒过点.

【答案】1;(2)证明见解析

【解析】

1)易知椭圆中,结合,可求出椭圆的方程;

2)结合由(1),可设直线的方程为,与椭圆方程联立,得到关于的一元二次方程,设,可表示出直线的方程,进而得到点的坐标,同理可得点的坐标,然后得到的表达式,结合韦达定理可证明,即,即以为直径的圆恒过点.

1)由题意,椭圆中,所以

所以椭圆的方程为.

2)由(1)知,,设直线的方程为

联立,可得

显然恒成立,

,则

易知直线的斜率存在,,则直线的方程为

所以,即,同理可得

所以

所以,即以为直径的圆恒过点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数fx)=x22x+1的图象与函数gx)=3cosπx的图象所有交点的横坐标之和等于(

A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线过点,倾斜角为.以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程

1)写出直线的参数方程及曲线的直角坐标方程;

2)若相交于两点,为线段的中点,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别为CD,且过点P是椭圆上异于CD的任意一点,直线PCPD的斜率之积为

1)求椭圆的方程;

2O为坐标原点,设直线CP交定直线x = m于点Mm为何值时,为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数零点的个数;

2)若函数存在两个零点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最小值;

2)若,讨论的单调性;

3)若上的最小值,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长等于2正方形中,点Q中点,点MN分别在线段上移动(M不与AB重合,N不与CD重合),且,沿着将四边形折起,使得面,则三棱锥体积的最大值为________;当三棱锥体积最大时,其外接球的表面积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”. 为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须相邻安排的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知直线的参数方程为s为参数),以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于AB两点.

(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;

(Ⅱ)已知点P的极坐标为,求的值.

查看答案和解析>>

同步练习册答案