精英家教网 > 高中数学 > 题目详情
19.已知$\overrightarrow a$与$\overrightarrow b$的夹角为120°,若$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,且$|\overrightarrow a|=2$,则$\overrightarrow b$在$\overrightarrow a$方向上的正射影的数量为$-\frac{{\sqrt{33}+1}}{8}$.

分析 $(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,可得$(\overrightarrow{a}+\overrightarrow{b})$•$(\overrightarrow{a}-2\overrightarrow{b})$=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=0,可得$|\overrightarrow{b}|$,即可得出.

解答 解:∵$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,
∴$(\overrightarrow{a}+\overrightarrow{b})$•$(\overrightarrow{a}-2\overrightarrow{b})$=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=0,
∵$|\overrightarrow{a}|$=2,$\overrightarrow{a}•\overrightarrow{b}$=$|\overrightarrow{a}||\overrightarrow{b}|$cos120°=-$|\overrightarrow{b}|$,
∴4+$|\overrightarrow{b}|$-2$|\overrightarrow{b}{|}^{2}$=0,
解得$|\overrightarrow{b}|$=$\frac{\sqrt{33}+1}{4}$.
∴$\overrightarrow b$在$\overrightarrow a$方向上的正射影的数量=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}$=$|\overrightarrow{b}|cos12{0}^{°}$=$-\frac{{\sqrt{33}+1}}{8}$,
故答案为:$-\frac{{\sqrt{33}+1}}{8}$.

点评 本题考查了向量垂直与数量积的关系、数量积运算性质、向量的投影,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{2}{3}$x3+x2+ax+1在(-1,0)上有两个极值点x1,x2,且x1<x2
(1)求实数a的取值范围;
(2)证明:当-$\frac{1}{2}$<x<0 时,f(x)>$\frac{11}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,若2Sn+3=3an(n∈N*),则数列{an}的通项公式an=3n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数在给定区间上的值域:
(1)y=$\frac{3x-2}{x+3}$;(x∈[-2,4])
(2)y=${4}^{x+\frac{1}{2}}$-6•2x+1,x∈[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设c>0,命题P:y=logcx是减函数;命题Q:2x-1+2c>0对任意x∈R恒成立.若P或Q为真,P且Q为假,试求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.中秋节前几天,小毛所在的班级筹划组织一次中秋班会,热心的小毛受班级同学委托,去一家小礼品店为班级的三个小组分别采购三种小礼物:中国结、记事本和笔袋(每种礼物的品种和单价都相同).
三个小组给他的采购计划各不相同,各种礼物的采购数量及价格如下表所示:
  中国结(个) 记事本(本) 笔袋(个) 合计(元)
 小组A 2 1 0 10
 小组B 1 3 1 10
 小组C 0 5 2 30
为了结账,小毛特意计算了各小组的采购总价(见上表合计栏),可是粗心的小毛却不慎抄错了其中一个数字.第二天,当他按照自己的记录去向各小组报销的时候,有同学很快发现其中有错.发现错误的同学并不知道三种小礼物的单价,那么他是如何作出判断的呢?请你用所学的行列式的知识对此加以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{g(x),x>0}\end{array}\right.$,若f(x)是奇函数,则g(3)的值是(  )
A.-$\frac{1}{8}$B.-8C.$\frac{1}{8}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,b>0,且$\frac{1}{a}+\frac{2}{b}=1$,则a+2b的最小值为(  )
A.$5+2\sqrt{2}$B.$8\sqrt{2}$C.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在△ABC中,∠BAC=60°,线段AD⊥平面ABC,AH⊥平面DBC,H为垂足.求证:H不可能是△BCD的垂心.

查看答案和解析>>

同步练习册答案