精英家教网 > 高中数学 > 题目详情
11.化简$\sqrt{{{(π-4)}^2}}+\root{3}{{{{(π-5)}^3}}}$的结果是(  )
A.2π-9B.9-2πC.-1D.1

分析 根据根式的运算性质$\root{n}{{a}^{n}}=\left\{\begin{array}{l}a,n为奇数\\ \left|a\right|,n为偶数\end{array}\right.$,可得答案.

解答 解:$\sqrt{{{(π-4)}^2}}+\root{3}{{{{(π-5)}^3}}}$=|π-4|+π-5=4-π+π-5=-1,
故选:C

点评 本题考查的知识点是根式的化简和计算,熟练掌握$\root{n}{{a}^{n}}=\left\{\begin{array}{l}a,n为奇数\\ \left|a\right|,n为偶数\end{array}\right.$,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),f(x)的部分图象如图示,则关于y=f(x)错误的是(  )
A.最小正周期为π
B.向右平移$\frac{π}{6}$个单位得到函数y=sin(2x-$\frac{π}{6}$)
C.在区间[0,$\frac{π}{2}$]上的值域为[-$\frac{1}{2},\frac{1}{2}$]
D.向左平移$\frac{π}{6}$个单位得到的图象关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1(-$\sqrt{3}$,0),而且过点C($\sqrt{3}$,$\frac{1}{2}$)
(1)求椭圆E的方程:
(2)过点C的直线l与椭圆E的另一交点为D,与y轴的交点为B.过原点O且平行于l的直线与椭圆的一个交点为H.若CD•CB=2OH2,求直线l的方程.
(3)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线0T与过点M,N的圆G相切,切点为T.线段0T的长是否为定值,若是并求出该定值,不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R上的奇函数f(x)满足f(x-2)=-f(x),则f(2006)的值为(  )
A.2006B.1003C.0D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,正确是(  )
A.两个向量相等,则它们的起点相同,终点也相同
B.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.四边形ABCD中,一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$
D.若$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足$\underset{lim}{n→∞}$bn=4?若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2014)-(S1+S2+…+S2014).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,数轴x,y的交点为O,夹角为θ,与x轴、y轴正向同向的单位向量分别是$\overrightarrow{e_1},\overrightarrow{e_2}$.由平面向量基本定理,对于平面内的任一向量$\overrightarrow{OP}$,存在唯一的有序实数对(x,y),使得$\overrightarrow{OP}=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,我们把(x,y)叫做点P在斜坐标系xOy中的坐标(以下各点的坐标都指在斜坐标系xOy中的坐标).
(1)若θ=90°,$\overrightarrow{OP}$为单位向量,且$\overrightarrow{OP}$与$\overrightarrow{e_1}$的夹角为120°,求点P的坐标;
(2)若θ=45°,点P的坐标为$({1,\sqrt{2}})$,求向量$\overrightarrow{OP}$与$\overrightarrow{e_1}$的夹角;
(3)若θ=60°,求过点A(2,1)的直线l的方程,使得原点O到直线l的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合$A=\left\{{x\left|{\frac{{{x^2}-x-6}}{x+1}≤0}\right.}\right\}$,集合B={x||x+2a|≤a+1,a∈R}.
(1)求集合A与集合B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,A,B,C是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是$\frac{{\sqrt{10}}}{2}$.

查看答案和解析>>

同步练习册答案