精英家教网 > 高中数学 > 题目详情
8.设M=a+$\frac{1}{a-2}$(2<a<3),$N=x(4\sqrt{3}-3x)(0<x<\frac{{4\sqrt{3}}}{3})$,则M,N的大小关系为M>N.

分析 由于M=a+$\frac{1}{a-2}$=a-2+$\frac{1}{a-2}$+2(2<a<3)在(2,3)上单调递减,可得M>4,利用基本不等式可求得N的范围,从而可比较二者的大小.

解答 解:∵M=a+$\frac{1}{a-2}$=a-2+$\frac{1}{a-2}$+2,
而0<a-2<1,
又∵y=x+$\frac{1}{x}$在(0,1]上单调递减,
∴M在(2,3)上单调递减,
∴M>(3-2)+$\frac{1}{3-2}$+2=4;
又0<x<$\frac{4\sqrt{3}}{3}$,
∴0<N=x(4-3x)=$\frac{1}{3}$•3x(4-3x)≤$\frac{1}{3}$[$\frac{3x+(4-3x)}{2}$]2=$\frac{4}{3}$.
∴M>N
故答案为:M>N.

点评 本题考查双钩函数函数的性质及基本不等式,关键在于合理转化,利用基本不等式解决问题,考查综合运用数学知识的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求值:
(1)sin(-$\frac{π}{4}$);
(2)cos(-60°);
(3)tan$\frac{7}{6}$π;
(4)sin225°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若全集U=R,函数f(x)=$\sqrt{lo{g}_{2}(4x-3)}$的定义域为A,函数g(x)=$\sqrt{3-2x-{x}^{2}}$的值域为B,求A∪B和∁U(A∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a∈$\{-1,1,\frac{1}{2},3\}$,则使函数y=xa的定义域为R且为奇函数的a的集合为{1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数y=f(x)及y=g(x)的图象分别如图所示,方程f(g(x))=0、g(f(x))=0的实根个数分别为a、b,则a+b=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=loga(2x+1)在区间$({-\frac{1}{2},0})$上满足f(x)>0.
(1)求实数a的取值范围;
(2)若$f(-\frac{1}{4})=1$,画出函数g(x)=$\left\{\begin{array}{l}f(x),(x>-\frac{1}{2})\\{2^x},(x≤-\frac{1}{2})\end{array}$的图象,并解不等式g(x)<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$f(x)=tan(2x+\frac{π}{3})$,若函数f(x+m)为奇函数,则最小正数m的值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\left\{\begin{array}{l}{|lnx|+3,}&{x>0}\\{-{x}^{2}-2x-2,}&{x≤0}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+3b+1=0有4个不同的实数根,则实数b的取值范围是[-5,-$\frac{5}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题P:(1-x)(x+4)≥0,q:x2-6x+9-m2≤0,m>0,若q是p的必要不充分条件,求m的取值范围.

查看答案和解析>>

同步练习册答案