【题目】已知函数,其中.
(1)讨论函数的单调性;
(2)当时,若恒成立,求实数b的范围.
【答案】(1)见解析;(2)
【解析】
(1)由函数求导得到,,分,, ,四种情况讨论求解.
(2)将恒成立,转化为恒成立,令,用导数法求其最小值即可.
(1)∵,定义域为.
∴,.
令,则,.
①当时,令,则;令,则.
∴在上单调递增;在上单调递减.
②当时,令,则;令,则或.
∴在,上单调递减;在上单调递增.
③当时,令,则在上单调递减.
④当时,令,则;令,则或.
∴在,上单调递减;在上单调递增.
综上所述,①当时,在上单调递增;在上单调递减.
②当时,在,上单调递减;在上单调递增.
③当时,在上单调递减.
④当时, 在,上单调递减;在上单调递增.
(2)∵,且当时,恒成立.
∴恒成立.
令,即.
∵,
∴在上单调递减;在上单调递增,
∴.
∴.
科目:高中数学 来源: 题型:
【题目】已知圆,点,是圆上任意一点,线段的垂直平分线交于点,当点在圆上运动时,点的轨迹为曲线.
1求曲线的方程;
2若直线 与曲线相交于两点,为坐标原点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O:,则下列说法中正确的是( )
A.函数是圆O的一个太极函数
B.圆O的所有非常数函数的太极函数都不能为偶函数
C.函数是圆O的一个太极函数
D.函数的图象关于原点对称是为圆O的太极函数的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的方程为,离心率,且短轴长为4.
求椭圆的方程;
已知,,若直线l与圆相切,且交椭圆E于C、D两点,记的面积为,记的面积为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有Ⅳ人参加,现将所有参加者按年龄情况分为,,,,,,等七组,其频率分布直方图如图所示,已知这组的参加者是6人.
(1)已知和这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率;
(2)组织者从这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为,求的分布列和均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆:的离心率为,左、右顶点分别为、,线段的长为4.点在椭圆上且位于第一象限,过点,分别作,,直线,交于点.
(1)若点的横坐标为-1,求点的坐标;
(2)直线与椭圆的另一交点为,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设点,定义,其中为坐标原点,对于下列结论:
符合的点的轨迹围成的图形面积为8;
设点是直线:上任意一点,则;
设点是直线:上任意一点,则使得“最小的点有无数个”的充要条件是;
设点是椭圆上任意一点,则.
其中正确的结论序号为
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com