精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中, 平面 上的动点, .

(Ⅰ)若点中点,证明:平面平面

(Ⅱ)判断点到平面的距离是否为定值?若是,求出定值;若不是,请说明理由.

【答案】(1)见解析(2)

【解析】试题解析:按照判定定理证明面面垂直只需在一个平面内寻找一条直线与另一个平面垂直,观察图形看到就是最佳“人”选;第二步求点到平面的距离,由于有现成的垂面,可以直接向交线引垂线,直接得出线面垂直,利用三角形等面积法求出距离.

试题解析:(Ⅰ)证明: 中点, .

平面 平面 .

平面 平面,且

平面.

平面 平面平面.

(Ⅱ),平面 平面

平面.

到平面的距离是定值.

令点平分,作的中点,连结 ,过

垂足为,显然共面.

平面 平面.

平面 .又 平面 平面 平面,即为所求.

.

..

.

到平面的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=xln(x+ )为偶函数,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】园林管理处拟在公园某区域规划建设一半径为米圆心角为(弧度)的扇形景观水池,其中为扇形的圆心,同时紧贴水池周边建一圈理想的无宽度步道,要求总预算费用不超过万元,水池造价为每平方米元,步道造价为每米元.

(1)当分别为多少时,可使广场面积最大,并求出最大值;

(2)若要求步道长为米,则可设计出水池最大面积是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数在区间上的最大值 ;

(2)若是函数图象上不同的三点,且,试判断之间的大小关系,并证明 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a是不为0的常数),当x∈[﹣2,2]时,函数f(x)的最大值与最小值的和为(
A.a+3
B.6
C.2
D.3﹣a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知下列条件解三角形:
①A=60°,a= ,b=1;
②A=30°,a=1,b=2;
③A=30°,c=10,a=6;
④A=30°,c=10,a=5,
其中有唯一解的序号为( )
A.①②③
B.①②④
C.②③④
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P的坐标为(x﹣3,y﹣2).
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;
(2)若利用计算机随机在区间[0,3]上先后取两个数分别记为x、y,求点P在第三象限的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2)

1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X1)X的数学期望;

2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

)试说明上述监控生产过程方法的合理性;

)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,其中xi为抽取的第i个零件的尺寸,i=1,2,,16

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μσ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997 40.997 4160.959 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中: (Ⅰ)求证:AC∥平面A1BC1
(Ⅱ)求证:平面A1BC1⊥平面BB1D1D.

查看答案和解析>>

同步练习册答案