精英家教网 > 高中数学 > 题目详情
8.某化工厂拟建一个下部为圆柱,上部为半球的容器(如图,圆柱高为h,半径为r,不计厚度,单位:米),按计划容积为72π立方米,且h≥2r,假设其建造费用仅与表面积有关(圆柱底部不计),已知圆柱部分每平方米的费用为2千元,半球部分每平方米4千元,设该容器的建造费用为y千元.
(Ⅰ)求y关于r的函数关系,并求其定义域;
(Ⅱ)求建造费用最小时的r.

分析 (Ⅰ)利用容积为72π立方米,列出$72π=\frac{{2π{r^3}}}{3}=π{r^2}h$,得到$h=\frac{72}{r^2}-\frac{2r}{3}≥2r$,然后求解建造费用的函数解析式.
(Ⅱ)利用导函数,判断单调性求解最值即可.

解答 (本小题满分12分)
解:(Ⅰ)由容积为72π立方米,得$72π=\frac{{2π{r^3}}}{3}=π{r^2}h$.…(2分)
$h=\frac{72}{r^2}-\frac{2r}{3}≥2r$,解得0<r≤3,…(4分)
又圆柱的侧面积为$2πrh=2πr({\frac{72}{r^2}-\frac{2r}{3}})$,
半球的表面积为2πr2
所以建造费用$y=\frac{288π}{r}+\frac{{16π{r^2}}}{3}$,定义域为(0,3].…(6分)
(Ⅱ)$y'=16π({\frac{18}{r}+\frac{r^2}{3}})'=32π\frac{{({r^3}-27)}}{{3{r^2}}}$,…(8分)
又0<r≤3,所以y'≤0,所以建造费用$y=\frac{288π}{r}+\frac{{16π{r^2}}}{3}$,
在定义域(0,3]上单调递减,所以当r=3时建造费用最小.…(12分)

点评 本题考查函数的导数的应用,函数的最值的求法,实际问题的处理方法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.给出下列四个命题:
①函数y=sin(2x-$\frac{π}{3}$)的图象可以由y=sin2x的图象向右平移$\frac{π}{2}$个单位长度得到;
②已知函数f(x)=(a2-a-1)x${\;}^{\frac{1}{a-2}}$为幂函数,则a=-1;
③若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则这个扇形的面积为$\frac{1}{si{n}^{2}1}$;
④设函数f(x)=lg|x|-sinx的零点个数为n,则n=6.
则其中所有正确命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O,F分别为双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的中心和右焦点,点G,M分别在E的渐近线和右支,FG⊥OG,GM∥x轴,且|OM|=|OF|,则E的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.曲线y=2x2-x在点(0,0)处的切线方程为(  )
A.x+y=0B.x-y=0C.x-y+2=0D.x+y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=ex(sinx-cosx)(0≤x≤4π),则函数f(x)的所有极大值之和为(  )
A.eB.eπ+eC.eπ-eD.eπ+e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式2x2-x-3>0的解集为(  )
A.{x|x<2或x>3}B.{x|x<-1或x>3}C.{x|x<-1或x>$\frac{3}{2}\}$D.{x|x<1或x>$\frac{3}{2}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.“x>3”是“x>1”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数y=3sin(2x+φ)(-π<φ<0)的图象向左平移$\frac{π}{6}$后得到的图象关于y轴对称,|φ|=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定义在R上的偶函数f(x),当x≥0时,f(x)=2x+3.
(1)求f(x)的解析式;
(2)若f(a)=7,求实数a的值.

查看答案和解析>>

同步练习册答案