精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=4sin2(x+$\frac{π}{4}$)-2$\sqrt{3}$cos2x+1,且给定条件p:$\frac{π}{4}$≤x≤$\frac{π}{2}$,又给定条件q:|f(x)-m|<2,且p是q的充分条件,则实数m的取值范围是(  )
A.(-2,2)B.(5,7)C.(3,5)D.(1,3)

分析 先根据两角和与差的公式进行化简,再由x的范围求出2x-$\frac{π}{3}$的范围,再结合正弦函数的性质可求出m的范围,再根据|f(x)-m|<2求出f(x)的范围,再由p是q的充分条件和(1)中f(x)的最大、最小值可得到m的范围即可.

解答 解:∵f(x)=2[1-cos($\frac{π}{2}$+2x)]-2$\sqrt{3}$cos2x+1
=2sin2x-2$\sqrt{3}$cos2x+3
=4sin(2x-$\frac{π}{3}$)+3.
又∵$\frac{π}{4}$≤x≤$\frac{π}{2}$,
∴$\frac{π}{6}$≤2x-$\frac{π}{3}$≤$\frac{2π}{3}$,
即5≤4sin(2x-$\frac{π}{3}$)+3≤7,
∴f(x)max=7,f(x)min=5,
∴P:m∈[5,7];
∵|f(x)-m|<2,
∴m-2<f(x)<m+2
又p是q的充分条件
∵$\left\{\begin{array}{l}{m-2<5}\\{m+2>7}\end{array}\right.$,
∴5<m<7.
故选:B.

点评 本题主要考查两角和与差的公式的应用和正弦函数的性质.高考中对三角函数的考查以基础题为主,平时要注意对基础知识的积累和运用的灵活性的锻炼.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数y=x+$\frac{a}{x}$(a>0)在区间$(0,\sqrt{a}]$上单调递减,在区间$[\sqrt{a},+∞)$上单调递增;函数$h(x)={({x^2}+\frac{1}{x})^3}+{(x+\frac{1}{x^2})^3}(x∈[\frac{1}{2},2])$
(1)请写出函数f(x)=x2+$\frac{a}{x^2}$(a>0)与函数g(x)=xn+$\frac{a}{x^n}$(a>0,n∈N,n≥3)在(0,+∞)的单调区间(只写结论,不证明);
(2)求函数h(x)的最值;
(3)讨论方程h2(x)-3mh(x)+2m2=0(0<m≤30)实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知sinα-sinβ=$\frac{{\sqrt{6}}}{3},cosα-cosβ=\frac{{\sqrt{3}}}{3}$,则$|{cos\frac{α-β}{2}}$|=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\frac{1}{3}≤a≤1$,若函数f(x)=ax2-2x+1的定义域[1,3].
(1)求f(x)在定义域上的最小值(用a表示);
(2)记f(x)在定义域上的最大值为M(a),最小值N(a),求M(a)-N(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11.2%纳税,已知某人出版一本书,共纳税420元,则这个人应得稿费(扣税前)为(  )
A.2800元B.3000元C.3800元D.3818元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若a>b>c>0,则$\sqrt{ab}$,$\sqrt{bc}$,$\sqrt{ac}$,c从小到大的顺序是c<$\sqrt{bc}$<$\sqrt{ac}$<$\sqrt{ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A,B,C是椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$上的不同三点,其中点A的坐标为(2$\sqrt{3}$,0),BC过椭圆的中心,点C在第一象限,且满足∠BAC=90°,|BC|=2|AC|.
(1)求椭圆M的方程;
(2)过点(0,t)的直线l(斜率存在)与椭圆M交于P,Q两点,设D为椭圆与y轴负半轴的交点,且|DP|=|DQ|,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn.已知a1=1,an+1=2Sn+1,n∈N*
(1)写出a2,a3的值,并求数列{an}的通项公式;
(2)若数列{bn}满足b1=0,bn-bn-1=log3an(n≥2),求数列{bn}的通项公式;
(3)记Tn为数列{nan}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2).
(1)求函数f(x)的解析式; 
(2)求函数f(x)在区间[-3π,3π]上的单调递增区间.

查看答案和解析>>

同步练习册答案