精英家教网 > 高中数学 > 题目详情

【题目】美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮.某公司研发的两种芯片都已经获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图像如图所示.

(1)试分别求出生产两种芯片的毛收入(千万元)与投入资金(千万元)的函数关系式;

(2)如果公司只生产一种芯片,生产哪种芯片毛收入更大?

(3)现在公司准备投入亿元资金同时生产两种芯片,设投入千万元生产芯片,用表示公司所过利润,当为多少时,可以获得最大利润?并求最大利润.(利润芯片毛收入芯片毛收入研发耗费资金)

【答案】(1)(2)详见解析;(3)千万元时,公司所获利润最大.最大利润千万元.

【解析】

(1)将 代入,求得的值,即可得到函数的解析式;

(2)由题意,根据的大小关系,可进行判定,得到答案.

(3)设投入千万元生产芯片,则投入千万元资金生产芯片,列出公司获利的函数关系式,利用二次函数的性质,即可求解.

(1)设投入资金千万元,则生产芯片的毛收入

代入,得

所以,生产芯片的毛收入.

(2)由,得;由,得

,得.

所以,当投入资金大于千万元时,生产芯片的毛收入大;

当投入资金等于千万元时,生产芯片的毛收入相等;

当投入资金小于千万元,生产芯片的毛收入大.

(3)公司投入亿元资金同时生产两种芯片,设投入千万元生产芯片,则投入千万元资金生产芯片.公司所获利润

故当,即千万元时,公司所获利润最大.最大利润千万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】AC为对称轴的抛物线的一部分,点B到边AC的距离为2km,另外两边AC,BC的长度分别为8km,2 km.现欲在此地块内建一形状为直角梯形DECF的科技园区.

(1)求此曲边三角形地块的面积;
(2)求科技园区面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】医药公司针对某种疾病开发了一种新型药物,患者单次服用制定规格的该药物后,其体内的药物浓度随时间的变化情况(如图所示):当时,的函数关系式为为常数);当时,的函数关系式为为常数).服药后,患者体内的药物浓度为,这种药物在患者体内的药物浓度不低于最低有效浓度,才有疗效;而超过最低中毒浓度,患者就会有危险.

(1)首次服药后,药物有疗效的时间是多长?

(2)首次服药1小时后,可否立即再次服用同种规格的这种药物?

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知曲线在点处的切线与直线平行

(Ⅰ)求的值;

(Ⅱ)是否存在自然数,使得方程内存在唯一的根?如果存在,求出;如果不存在,请说明理由。

(Ⅲ)设函数表示中的较小者),求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《城市规划管理意见》里面提出“新建住宅要推广街区制,原则上不再建设封闭住宅小区,已建成的封闭小区和单位大院要逐步打开”,这个消息在网上一石激起千层浪,各种说法不一而足.某网站为了解居民对“开放小区”认同与否,从岁的人群中随机抽取了人进行问卷调查,并且做出了各个年龄段的频率分布直方图(部分)如图所示,同时对人对这“开放小区”认同情况进行统计得到下表:

(Ⅰ)完成所给的频率分布直方图,并求的值;

(Ⅱ)如果从两个年龄段中的“认同”人群中,按分层抽样的方法抽取6人参与座谈会,然后从这6人中随机抽取2人作进一步调查,求这2人的年龄都在内的概率 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】邗江中学高二年级某班某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中选出2人作为该组代表参加座谈会.

(1)记“选出2人参加义工活动的次数之和为4”为事件,求事件发生的概率;

(2)设为选出2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义区间[x1 , x2]长度为x2﹣x1(x2>x1),已知函数f(x)= (a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家发现视觉和空间能力与性别有关,某高中数学兴趣小组为了验证这个结论,从兴趣小组中抽取50名同学(男3020),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

几何题

代数题

合计

男同学

22

8

30

女同学

8

12

20

合计

30

20

50

(1)能否据此判断有的把握认为视觉和空间能力与性别有关?

(2)以上列联表中女生选做几何题的频率作为概率,从该校1500名女生中随机选6名女生,记6名女生选做几何题的人数为,求的数学期望和方差.

附表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知).

(1)当时,求关于的不等式的解集;

(2)若fx)是偶函数,求k的值;

(3)在(2)条件下,设,若函数的图象有公共点,求实数b的取值范围.

查看答案和解析>>

同步练习册答案