【题目】现有一长为100码,宽为80码,球门宽为8码的矩形足球运动场地,如图所示,其中是足球场地边线所在的直线,球门处于所在直线的正中间位置,足球运动员(将其看做点)在运动场上观察球门的角称为视角.
(1)当运动员带球沿着边线奔跑时,设到底线的距离为码,试求当为何值时最大;
(2)理论研究和实践经验表明:张角越大,射门命中率就越大.现假定运动员在球场都是沿着垂直于底线的方向向底线运球,运动到视角最大的位置即为最佳射门点,以的中点为原点建立如图所示的直角坐标系,求在球场区域内射门到球门的最佳射门点的轨迹.
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
(1)根据表中数据建立年销售量y关于年宣传费x的回归方程;
(2)已知这种产品的年利润z与x,y的关系为,根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,年销售量及年利润的预报值是多少?
②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.
附:回归方程中的斜率和截距的最小二乘估计公式分别为
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)x2﹣xlnx,g(x)=(m﹣x)lnx+(1﹣m)x(m<0).
(1)讨论函数f′(x)的单调性;
(2)求函数F(x)=f(x)﹣g(x)在区间[1,+∞)上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆,点为其右焦点,过点的直线与椭圆相交于点,.
(1)当点在椭圆上运动时,求线段的中点的轨迹方程;
(2)如图1,点的坐标为,若点是点关于轴的对称点,求证:点,,共线;
(3)如图2,点是直线上的任意一点,设直线,,的斜率分别为,,,求证,,成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组 | 频数 | 频率 |
12 | ||
4 | ||
合计 |
根据上面图表,求处的数值
在所给的坐标系中画出的频率分布直方图;
根据题中信息估计总体平均数,并估计总体落在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是__________
①存在点,使得平面平面;
②存在点,使得平面平面;
③的面积可能等于;
④若分别是在平面与平面的正投影的面积,则存在点,使得
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线上的动点到点的距离减去到直线的距离等于1.
(1)求曲线的方程;
(2)若直线 与曲线交于,两点,求证:直线与直线的倾斜角互补.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com