精英家教网 > 高中数学 > 题目详情

【题目】现有一长为100码,宽为80码,球门宽为8码的矩形足球运动场地,如图所示,其中是足球场地边线所在的直线,球门处于所在直线的正中间位置,足球运动员(将其看做点)在运动场上观察球门的角称为视角.

(1)当运动员带球沿着边线奔跑时,设到底线的距离为码,试求当为何值时最大;

(2)理论研究和实践经验表明:张角越大,射门命中率就越大.现假定运动员在球场都是沿着垂直于底线的方向向底线运球,运动到视角最大的位置即为最佳射门点,以的中点为原点建立如图所示的直角坐标系,求在球场区域内射门到球门的最佳射门点的轨迹.

【答案】(1) (2)见解析

【解析】

(1)要求得最大,只需最大,利用,将其展开后表示为关于x的函数,利用基本不等式求得最值.

(2)设点,其中,将表示为关于x、y的函数,利用基本不等式求得取到最值时的条件,得到关于x,y的方程即为点的轨迹..

(1)

当且仅当,即时,取得最大值

上单调递增,∴当取得最大值时,最大,

取得最大值

(2)过点,设点,其中

当且仅当,即时,取得最大值

此时轨迹方程为

其表示焦点为,实轴长为8的等轴双曲线在的一部分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.

(1)根据表中数据建立年销售量y关于年宣传费x的回归方程;

(2)已知这种产品的年利润zxy的关系为,根据(1)中的结果回答下列问题:

①当年宣传费为10万元时,年销售量及年利润的预报值是多少?

②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.

附:回归方程中的斜率和截距的最小二乘估计公式分别为

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求关于的不等式的解集;

2)若,求关于的不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxx2xlnxgx)=(mxlnx+1mxm0).

1)讨论函数fx)的单调性;

2)求函数Fx)=fx)﹣gx)在区间[1+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意,函数满足:,数列的前15项和为,数列满足,若数列的前项和的极限存在,则________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,点为其右焦点,过点的直线与椭圆相交于点.

(1)当点在椭圆上运动时,求线段的中点的轨迹方程;

(2)如图1,点的坐标为,若点是点关于轴的对称点,求证:点共线;

(3)如图2,点是直线上的任意一点,设直线的斜率分别为,求证成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:

分组

频数

频率

12

4

合计

根据上面图表,求处的数值

在所给的坐标系中画出的频率分布直方图;

根据题中信息估计总体平均数,并估计总体落在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点是对角线上的动点(点不重合),则下列结论正确的是__________

①存在点,使得平面平面

②存在点,使得平面平面

的面积可能等于

④若分别是在平面与平面的正投影的面积,则存在点,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线上的动点到点的距离减去到直线的距离等于1.

(1)求曲线的方程;

(2)若直线 与曲线交于两点,求证:直线与直线的倾斜角互补.

查看答案和解析>>

同步练习册答案