精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线 的两条渐近线分别为l1 , l2 , 经过右焦点F垂直于l1的直线分别交l1 , l2 于 A,B 两点.若| |,| |,| |成等差数列,且 反向,则该双曲线的离心率为( )
A.
B.
C.
D.

【答案】C
【解析】解:如图,

设实轴长为2a,虚轴长为2b,
令∠AOF=α,则由题意知tanα=
△AOB中,∠AOB=180°﹣2α,tan∠AOB=﹣tan2α
=
∵| |,| |,| |成等差数列,
∴设| |=m﹣d、| |=m、| |=m+d,
∵OA⊥BF,∴(m﹣d)2+m2=(m+d)2
整理,得d= m,
∴﹣tan2α=﹣ =
解得 =2或 =﹣ (舍),
∴b=2a,c= a,
∴e= =
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2分别是椭圆C: +y2=1的左、右焦点.
(1)若P是第一象限内该椭圆上的一点, =﹣ ,求点P的坐标;
(2)设过定点M(0,2)的直线l与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是偶函数,则下列结论可能成立的是(
A. ??
B.
C. ??
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(2)若二面角P﹣CD﹣A的大小为45°,求二面角P﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过 x 的部分按平价收费,超出 x 的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了 100 位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中 a 的值;
(Ⅱ)若该市政府希望使 85%的居民每月的用水量不超过标准 x(吨),估计 x 的值,并说明理由;
(Ⅲ)已知平价收费标准为 4 元/吨,议价收费标准为 8元/吨.当 x=3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱 中, ,A1B与AB1交于点D,A1C与AC1交于点E.求证:

(1)DE∥平面B1BCC1
(2)平面 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,则下列结论正确的是(
①f(x)的图象关于直线 对称
②f(x)的图象关于点 对称
③f(x)的图象向左平移 个单位,得到一个偶函数的图象
④f(x)的最小正周期为π,且在 上为增函数.
A.③
B.①③
C.②④
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+m|+|2x﹣1|(m∈R) (I)当m=﹣1时,求不等式f(x)≤2的解集;
(II)设关于x的不等式f(x)≤|2x+1|的解集为A,且[ ,2]A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案