精英家教网 > 高中数学 > 题目详情

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )

A. B. C. D.

【答案】B

【解析】

先求出点A1到底面的距离A1O的长度,得C1到底面的距离,再求出AC1的长度,由线面角的定义得AC1与底面ABC所成角的正弦值,即可求出余弦值.

设三棱柱ABC﹣A1B1C1的侧棱与底面边长都等于a,如图所示,则AO= ,在中,,

,在中,得,得为等边三角形,∴∠A1AC=60°,

在菱形ACC1A1中,得∠AA1C=120°,AC1a,又点C1到底面ABC的距离等于点A1到底面ABC的距离

∴AC1与底面ABC所成角的正弦值为,∴AC1与底面ABC所成角的余弦值为

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求的极值;

(2)若有2个不同零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面是菱形,.

(1)求证:

(2)若的中点,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,已知有三个互不相等的零点,且.

(Ⅰ)若.(ⅰ)讨论的单调区间;(ⅱ)对任意的,都有成立,求的取值范围;

(Ⅱ)若,设函数处的切线分别为直线是直线的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面ABCD,四边形AEFB为矩形,

1)求证:平面ADE

2)求平面CDF与平面AEFB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上单调递减,且满足 () 求的取值范围;()设,求在上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求椭圆的极坐标方程和直线的直角坐标方程;

(2)若点的极坐标为,直线与椭圆相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为直角梯形,,且,平面底面的中点,为等边三角形,是棱上的一点,设不重合).

1)当时,求三棱锥的体积;

2)若平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

1)若,且为函数的一个极值点,求函数的单调递增区间;

2)若,且函数的图象恒在轴下方,其中是自然对数的底数,求实数的取值范围.

查看答案和解析>>

同步练习册答案